
QL Assembly Language Mailing List

Issue 7

Norman Dunbar

PUBLISHED BY MEMYSELFEYE PUBLISHING ;-)

Download from:
https://github.com/NormanDunbar/QLAssemblyLanguageMagazine/blob/Issue_007/Issue_
007/Assembly_Language_007.pdf

Licence:
Licensed under the Creative Commons Attribution-NonCommercial 3.0 Unported License (the
“License”). You may not use this file except in compliance with the License. You may obtain
a copy of the License at http://creativecommons.org/licenses/by-nc/3.0. Unless re-
quired by applicable law or agreed to in writing, software distributed under the License is dis-
tributed on an “AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either
express or implied. See the License for the specific language governing permissions and limita-
tions under the License.

This pdf document was created on 1/10/2019 at 18:45.

Copyright c⃝2019 Norman Dunbar

https://github.com/NormanDunbar/QLAssemblyLanguageMagazine/blob/Issue_007/Issue_007/Assembly_Language_007.pdf
https://github.com/NormanDunbar/QLAssemblyLanguageMagazine/blob/Issue_007/Issue_007/Assembly_Language_007.pdf
http://creativecommons.org/licenses/by-nc/3.0

Contents

1 Preface . 9

1.1 Feedback 9

1.2 Subscribing to The Mailing List 9

1.3 Contacting The Mailing List 10

2 Feedback on Issue 6 . 11

2.1 No Feedback so far! 11

3 The Fastest Scrolling in the West . 13

3.1 Messing Around with the Q68 13

3.2 The Straight-Forward Approach 14

3.3 Unrolling loops (or: How to waste Precious Amounts of Memory) 14

3.4 MOVEM.L Can Work in Other Places Other Than the Stack 16

3.5 If Software Can’t Cope, Use Hardware 17

4 Lookup Tables . 19

4.1 Bits and Bobs 19

4.2 Character Characteristics 24

4.2.1 A Final Thought . 28

5 UTF8 and the QL . 29

5.1 UTF8 Encoding 29

5.2 The QL Character Set 30

6 Ql2utf8 Utility . 33

6.1 The Code 33

7 Utf82ql Utility . 43

7.1 The Code 43

8 Image Credits . 55

Listings

3.1 Scrolling one pixel leftwards . 14

3.2 The REPT Macro . 14

3.3 A simple REPT example . 15

3.4 Unrolling the innner loop . 15

3.5 Unrolling the outer loop . 16

3.6 MOVEM restrictions . 16

3.7 Improving the REPT macro . 16

3.8 Scrolling one pixel leftwards . 16

4.1 Calculating values with recursion . 20

4.2 Initialising the lookup table . 23

4.3 Using the lookup table to find a value . 23

4.4 Character attribute bit masks . 24

4.5 C68 utility: characters_c . 24

4.6 Extract of the generated file characters_asm_in 25

4.7 Character attributes library - charAttr_asm_in 26

4.8 Using the charAttr_asm_in routines . 28

6.1 Executing ql2utf8 . 33

6.2 Ql2utf8: Introductory comments . 33

6.3 Ql2utf8: Job header and initialisation . 34

6.4 Ql2utf8: Initialising constant registers . 35

6.5 Ql2utf8: Top of the loop - reading bytes . 35

6.6 Ql2utf8: One byte? Or More? . 36

6.7 Ql2utf8: Handling the UK Pound . 36

6.8 Ql2utf8: Handling copyright . 36

6.9 Ql2utf8: handling low value ASCII codes . 37

6.10 Ql2utf8: Writing one byte of UTF8 . 37

6.11 Ql2utf8: Handling exceptions - the Grave/backtick 37

6.12 Ql2utf8: Handling exceptions - the Euro Currency symbol 38

6.13 Ql2utf8: Handling exceptions - the arrow characters 38

6.14 Ql2utf8: The arrow character table . 39

6.15 Ql2utf8: Two byte characters . 39

6.16 Ql2utf8: Clean up and exit handling . 40

6.17 Ql2utf8: The UTF8 “two byte” character table . 40

7.1 Executing utf82ql . 43

7.2 Utf82Ql: Introductory comments . 43

7.3 Utf82Ql: Job header . 44

7.4 Utf82Ql: Testing for two channels . 45

7.5 Utf82Ql: Initialising constant registers . 45

7.6 Utf82Ql: The main loop starts . 46

7.7 Utf82Ql: Testing for one byte UTF characters . 46

7.8 Utf82Ql: Handling exceptions - the grave/backtick character 46

7.9 Utf82Ql: Handling one byte UTF characters . 47

7.10 Utf82Ql: Testing for two byte UTF characters . 47

7.11 Utf82Ql: Testing for three byte UTF characters . 47

7.12 Utf82Ql: Error out on UTF8 four byte characters 48

7.13 Utf82Ql: Handling UTF8 two byte characters . 48

7.14 Utf82Ql: Handling exceptions - the UK Pound symbol 48

7.15 Utf82Ql: Handling exceptions - the copyright symbol 48

7.16 Utf82Ql: Two byte UTF8 character handling . 49

7.17 Utf82Ql: Invalid UTF8 character detected . 49

7.18 Utf82Ql: Three byte UTF8 character handling . 49

7.19 Utf82Ql: Fetching the third byte . 50

7.20 Utf82Ql: Handling the Euro Currency symbol . 50

7.21 Utf82Ql: Handling the arrow characters . 50

7.22 Utf82Ql: Writing and reading bytes . 51

7.23 Utf82Ql: Scanning for UTF8 words . 51

7.24 Utf82Ql: UTF8 character found . 52

7.25 Utf82Ql: Missing UTF8 word . 52

7.26 Utf82Ql: Clean up and exit handling . 52

7.27 Utf82Ql: The UTF8 “two byte” character table . 53

1. Preface

1.1 Feedback

Please send all feedback to assembly@qdosmsq.dunbar-it.co.uk. You may also send articles
to this address, however, please note that anything sent to this email address may be used in a
future issue of the eMagazine. Please mark your email clearly if you do not wish this to happen.

This eMagazine is created in LATEXsource format, aka plain text with a few formatting commands
thrown in for good measure, so I can cope with almost any format you might want to send me. As
long as I can get plain text out of it, I can convert it to a suitable source format with reasonable
ease.

I use a Linux system to generate this eMagazine so I can read most, if not all, Word or MS Office
documents, Quill, Plain text, email etc formats. Text87 might be a problem though!

1.2 Subscribing to The Mailing List

This eMagazine is available by subscribing to the mailing list. You do this by sending your
favourite browser to http://qdosmsq.dunbar-it.co.uk/mailinglist and clicking on the
link “Subscribe to our Newsletters”.

On the next screen, you are invited to enter your email address twice, and your name. If you
wish to receive emails from the mailing list in HTML format then tick the box that offers you that
option. Click the Subscribe button.

An email will be sent to you with a link that you must click on to confirm your subscription. Once
done, that is all you need to do. The rest is up to me!

assembly@qdosmsq.dunbar-it.co.uk
http://qdosmsq.dunbar-it.co.uk/mailinglist

10 Chapter 1. Preface

1.3 Contacting The Mailing List

I’m rather hoping that this mailing list will not be a one-way affair, like QL Today appeared to be.
I’m very open to suggestions, opinions, articles etc from my readers, otherwise how do I know
what I’m doing is right or wrong?

I suspect George will continue to keep me correct on matters where I get stuff completely wrong,
as before, and I know George did ask if the list would be contactable, so I’ve set up an email
address for the list, so that you can make comments etc as you wish. The email address is:

assembly@qdosmsq.dunbar-it.co.uk

Any emails sent there will eventually find me. Please note, anything sent to that email address will
be considered for publication, so I would appreciate your name at the very least if you intend to
send something. If you do not wish your email to be considered for publication, please mark it
clearly as such, thanks. I look forward to hearing from you all, from time to time.

If you do have an article to contribute, I’ll happily accept it in almost any format - email, text,
Word, Libre/Open Office odt, Quill, PC Quill, etc etc. Ideally, a LATEXsource document is the best
format, because I can simply include those directly, but I doubt I’ll be getting many of those! But
not to worry, if you have something, I’ll hopefully manage to include it.

assembly@qdosmsq.dunbar-it.co.uk

2. Feedback on Issue 6

2.1 No Feedback so far!

3. The Fastest Scrolling in the West

I’m very grateful to Tobias Fröschle who submitted this article for publication.

It concerns the various ways in which the Q68 can move memory around. It appears that the Q68
has a lot of memory, and doing simple things like scrolling the screen around can take quite some
time.

I hope you enjoy the following.

3.1 Messing Around with the Q68

While Norman tends to write his stuff in GWASS, my favourite assembler is QMac. The choice
is mainly a matter of taste – GWASS overall has similar features to QMac. So bear with me, the
code examples here will be in QMac lingo.

In the passing time between Christmas and back to work called “between years” in Germany, there
was a bit of time to mess around with the Q68 and the trusty QMac Assembler. I was always a bit
concerned how the Q68 can handle the massive amounts of memory that need to be shoved around
in order to handle a high-colour screen.

My favourite resolution on the Q68 is the high colour mode with 512 by 384 pixels. One pixel takes
16 bits in this resolution, a 68000 word. That makes 1kBytes per scan-line, all in all 384kBytes for
the whole screen. Scrolling this screen to the left by one pixel, for example, requires moving 384
x (1024 - 2) bytes of memory, scrolling the whole screen to the left by 512 pixels with a one-pixel
increment to create smooth animation requires 384kBytes * 512 times to be moved – a whooping
192Mbytes of memory shoved around. (In a game, for example, you would, however, scroll in
larger increments to speed up things, normally.)

All the below experiments will work on the Q68 or on QPC2 (provided you set the screen resolu-
tion to 512 x 384 and 16-bit colour.). The screen start address will be different, though. (You can
find out with the SCR_BASE S*BASIC command).

14 Chapter 3. The Fastest Scrolling in the West

To put things in perspective: This action results in roughly 12 times more memory to shove around
than an original Black Box would need to do for the same action. Granted, on the Q68 we don’t
need to shift the screen words themselves to scroll horizontally, which makes matters a bit simpler
(thus faster), but it is still a huge task. I just wanted to see how the Q68 would cope with this.

3.2 The Straight-Forward Approach

Let’s start simple (or, should I call that naïve?): Two nested loops, the innermost moves one scan-
line one pixel to the left using two address registers, the outermost iterates over all scan-lines. Call
that routine 512 times and we’re done:

1 ; S c r o l l s t h e s c r e e n one p i x e l t o t h e l e f t
2 L s c r o l l
3 movem . l a0−a1 ,−(sp)
4 l e a s c r e e n _ s t a r t , a0
5 l e a 2 (a0) , a1
6 move .w #384−1 , d1 ; 384 scan− l i n e s
7
8 l i n e L o o p
9 move .w #512−1 , d0 ; 512 p i x e l s t o move

10
11 cpy_ loop
12 move .w (a1) + , (a0) +
13 dbf d0 , cpy_ loop
14 dbf d1 , l i n e L o o p

Listing 3.1: Scrolling one pixel leftwards

We’re at 90 seconds now to scroll a screen across the whole screen width and the scrolling looks,
admittedly, pretty lame (remember, that is moving 192 megabytes of memory. . .). The first im-
provement that comes to mind is a long-word move in cpy_loop which would allow us to save half
of the inner loop iterations. Should be like 30-50% faster on a real 68000. On a Q68, it unfor-
tunately isn’t for some reason. In fact, it is only a few seconds faster and not really a significant
improvement. Time to look for some more drastic means to speed things up:

3.3 Unrolling loops (or: How to waste Precious Amounts of Memory)

What slows the straightforward approach down quite a bit are the two nested loops (one per width
of screen, one per height of the screen). If we could get rid of these, or at least one of them, we
should achieve a significant improvement. And, in fact, we can. The Q68 has so much memory
that we can put that to good use: Instead of looping around one single longword move, we can
write all the 256 iterations in a row into our source code, voilà, the inner loop is gone. Because
programmers are lazy and writing 256 identical statements is a bit boring, it is now time to show
the interested (?) reader what the “Mac” in QMac is good for: Time for some macro trickery.

1 REPT MACRO num , a r g s
2 LOCAL count , pIndex , pCount
3 Count SETNUM 1
4 Lp MACLAB
5 pCount SETNUM [. NPARAMS] − 1
6 pIndex SETNUM 2
7 pLoop : MACLAB
8 EXPAND

3.3 Unrolling loops (or: How to waste Precious Amounts of Memory) 15

9 [.PARAM([pIndex])]
10 NOEXPAND
11 pCount SETNUM [pCount]−1
12 pIndex SETNUM [pIndex]+1
13 IFNUM [pCount] >= 0 GOTO pLoop
14 Count SETNUM [c o u n t] + 1
15 IFNUM [c o u n t] <= [num] GOTO l p
16 ENDM

Listing 3.2: The REPT Macro

If this is all Chinese for you, the whole macro simply repeats the text you give it as second to last
argument(s) the amount of times you give as the first, like

1 NotUse fu l
2 REPT 256 ,{ nop } ,{ c l r . l d0 }

Listing 3.3: A simple REPT example

Will expand to 256 NOP and CLR.L D0 instructions in your code. The GOTO directives don’t
do anything in your finished program, but rather have the assembler running in circles producing
source code for you (nice, isn’t it?). The outer loop starting at Lp iterates over the parameter list
the amount of times you give as first parameter, the inner loop at pLoop over the parameter list.
Ideal stuff for lazy programmers.

Note
The macro would look a bit different when written in GWASS which uses a similar, but
slightly different macro syntax (That I don’t happen to be familiar with, unfortunately (and
I should really work on my writing style – That looks like a programmer’s))).

Now back to our screen scrolling problem: We wanted to unroll the inner loop which iterates over
the pixels in one single scan-line to get rid of the inner loop. So, let’s place that macro invocation
(incantation?) in place of that inner loop, replacing it with 256 long word move instructions:

1 ; S c r o l l s t h e s c r e e n one p i x e l t o t h e l e f t
2 L s c r o l l
3 movem . l a0−a1 ,−(sp)
4 l e a s c r e e n _ s t a r t , a0
5 l e a 2 (a0) , a1
6 move .w #384−1 , d1 ; 384 scan− l i n e s
7
8 l i n e L o o p
9 REPT 256 ,{ move . l (a1) + , (a0) +}

10 dbf d1 , l i n e L o o p

Listing 3.4: Unrolling the innner loop

The REPT invocation looks unremarkable, but if you have a look at the produced assembly listing,
you will find that the assembler has just expanded the macro to 256 lines of code, effectively
replacing that inner loop (this also blew our code for that loop from xxx to yyy bytes. But after all,
we are on a Q68 or QPC and have plenty of memory to trade for).

If you run the above code, you will find it runs about three times faster than the previous version,
so we have bought execution speed for memory. Want to drive this a bit further by unrolling the
outer loop as well? Try something like

16 Chapter 3. The Fastest Scrolling in the West

1 s c r e e n L o n g s EQU 512∗ 384∗2/4
2 REPT [s c r e e n L o n g s] , { move . l (a1) + , (a0) +}

Listing 3.5: Unrolling the outer loop

But that might be a little ridiculous, so I have left this as exercise to the reader (Ha! I always
wanted to use this sentence somewhere).

Can we still do better? Sure.

3.4 MOVEM.L Can Work in Other Places Other Than the Stack

There is one instruction in the 68k instruction set that can shove memory about in large chunks –
The MOVEM instruction. You would normally use it to save and restore registers to and from the
stack in subroutines, but its use is not restricted to that. In cases where you have many registers to
spare, you can also use it to implement large block moves.

There’s just one single caveat: The MOVEM instruction does not work with a “post-increment”
we would need to do a block move, so a simple

1 movem . l (a0) + ,REGSET
2 movem . l REGSET , (a1) + ; t h i s i n s t r u c t i o n does n o t e x i s t

Listing 3.6: MOVEM restrictions

will unfortunately not work, so, in order to repair this, we need to increment the target register
with a separate instruction.

So, let’s assume you can spare (or free up) registers d3-d7 and address registers a2-a6 in our
scrolling routine, we can move a whoopy 40 bytes per instruction like in (note the backslash in a
macro invocation is understood as a line continuation character in QMac)

1 REPT 25 ,{ movem . l (a1) + , d3−d7 / a2−a6 } , \
2 { movem . l d3−d7 , a2−a6 , (a0) } , \
3 { adda . l \ # 4 0 , a0 }

Listing 3.7: Improving the REPT macro

This time our macro receives 4 arguments, the repetition count and the three lines to repeat. The
macro magic will repeat these three lines 25 times in an unrolled loop, creating copy commands
for 250 longwords. Oops, 6 missing to a complete scan-line, so add a

1 REPT 6 ,{ move . l (a1) + , (a0) +}

Listing 3.8: Scrolling one pixel leftwards

after it to create code to move the last 6 long words of a scan-line.

This is only marginally faster as the above unrolled loop on a Q68, but saves a significant amount
of code space with an even (slightly) better runtime speed. I was actually expecting a bit more
speedup, but Q68 instruction timings seem to differ from the original 68k.

The MOVEM block move is the fastest way to move large chunks of memory around using a
68000 CPU (In case you happen to know anything faster, I’d like to hear from you), so, we’re at
the end here. Really? No, not quite:

3.5 If Software Can’t Cope, Use Hardware 17

3.5 If Software Can’t Cope, Use Hardware

If you want to speed up the scrolling even further, you can use the SD memory in the Q68. This
is a small (read: scarce, about 12k) amount of very fast memory that can be used for time-critical
routines.

Code like the above (that mainly accesses “slow” memory) can be expected to run about three
to four times faster in Q68 SD RAM than in the normal DRAM areas. As the amount of space
available in fast memory is limited (some of it is already used by SMSQ/E as well), you might
want to keep the usage of fast memory as low as possible. Also note that, just like the RESPR area,
it is not possible to release space in fast memory once it has been allocated. A game, for example,
could however easily argue that you would reset the computer anyway after finishing.

My tests resulted in about a three-fold speed increase once the above routines were copied to fast
memory and executed from there.

4. Lookup Tables

Lookup tables are useful. Remember when you were at school and had to find the logarithm of a
number? You didn’t have to calculate it every time it was needed, someone else did it for you and
put the details in a booklet1. When writing code it’s sometimes useful to use lookup tables rather
than doing a possibly resource intensive calculation each and every time.

The rest of this section shows a couple of uses for lookup tables.

4.1 Bits and Bobs

Here’s a sequence of 10 numbers, they are all integers:

0 , 1 , 1 , 2 , 1 , 2 , 2 , 3 , 1 , 2 . . .

Q1: Do you know what the next value in the sequence will be?

Q2: Do you know what the above sequence represents?

Would it help if I told you that the formula to calculate the value for number ‘n’ in the sequence is
given by:

Value (n) = (v a l u e (i n t (n / 2)) + (n and 1)

For example, to find the value of the number 10, the 11th number in the sequence as we start from
0, and which just happens to be the answer to Q1 above, we must take value(5) and add on bit
0 of 10. Of course, we need then to find the answer to Value(2) and add on bit 0 of 5 and so on.
Recursion anyone? This works out as the following sequence of calculations:

1Ok, I’m probably showing my age here - calculators were not invented/easily available until after I was in secondary
school! We had a booklet of log tables to look up.

20 Chapter 4. Lookup Tables

Value (1 0) = (v a l u e (5) + (10 and 1)
Value (5) = (v a l u e (2) + (5 and 1)
Value (2) = (v a l u e (1) + (2 and 1)
Value (1) = (v a l u e (0) + (1 and 1)
Value (0) = 0

This gives us, working backwards up the above sequence of calculations:

Value (0) = 0
Value (1) = 0 + 1 = 1
Value (2) = 1 + 0 = 1
Value (5) = 1 + 1 = 2
Value (1 0) = 2 + 0 = 2

So, the 11th number in the sequence, aka value(10), is 2. That answers Q1, Q2 will be answered
soon, I promise.

Assuming you need to know these numbers in a program you happen to be writing in assembly lan-
guage, you could work them out each time. The formula does tend to imply recursion is required
and the following brief section of code will do exactly that.

1 ; On E n t r y (t o Value r o u t i n e) :
2 ; D0 . B = Re q u i r e d v a l u e f o r ’n ’ .
3 ;
4 ; On E x i t :
5 ; D1 . B = Answer (Value (n)) .
6 ;
7 ; A l l r e g i s t e r s a r e p r e s e r v e d e x c e p t D1 and D0 .
8 ;
9 ; E n t e r a t s t a r t f o r a demo wi th N = 1 0 . E n t e r a t

10 ; Value , w i th D0 h o l d i n g t h e r e q u i r e d b y t e va lue , t o
11 ; c a l c u l a t e t h e r e s u l t f o r t h a t v a l u e .
12 ;
13 S t a r t moveq #10 , d0 ; N = 10
14 b s r . s Value ; Get r e c u r s i v e
15
16 ; R e s u l t i s now i n D1 . B .
17
18 Back moveq #0 , d0 ; No e r r o r s
19 r t s
20
21 Value t s t . b d0 ; N = 0 y e t ?
22 bne . s More ; Not y e t
23 moveq #0 , d1 ; Yes Value (0) = 0
24 r t s
25
26 More move .w d0 ,−(a7) ; Save c u r r e n t N
27 l s r . b #1 , d0 ; INT (N/ 2)
28 b s r . s Value ; Recur se
29
30 ; On r e t u r n t o here , D1 . B h o l d s t h e Value (N/ 2) r e s u l t .
31
32 r t n H e r e move .w (a7) + , d0 ; C u r r e n t N a g a i n
33 b t s t #0 , d0 ; Anyth ing t o add i n b i t 0?

4.1 Bits and Bobs 21

34 beq . s Done ; No , even number .
35 addq . b #1 , d1 ; Yes , add b i t 0 o f N
36
37 Done r t s

Listing 4.1: Calculating values with recursion

So, what happens in the above when we use 10 as the required value?

1. At the label Value, D0 = 10 and the stack contains the return address of label Back, and the
return to SuperBasic address. The stack looks like this:

S u p e r B a s i c
Back

2. As D0 is not yet zero, we end up at label More where we stack D0, shift it right to get 5, and
call Value again. At Value, the stack looks like this:

S u p e r B a s i c
Back
10
r t n H e r e

3. As D0 is not yet zero, we end up at label More where we stack D0, shift it right to get 2, and
call Value again. At Value, the stack looks like this:

S u p e r B a s i c
Back
10
r t n H e r e
5
r t n H e r e

4. As D0 is not yet zero, we end up at label More where we stack D0, shift it right to get 1, and
call Value again. At Value, the stack looks like this:

S u p e r B a s i c
Back
10
r t n H e r e
5
r t n H e r e
2
r t n H e r e

5. As D0 is not yet zero, we end up at label More where we stack D0, shift it right to get 0, and
call Value again. At Value, the stack looks like this:

S u p e r B a s i c
Back
10
r t n H e r e
5
r t n H e r e

22 Chapter 4. Lookup Tables

2
r t n H e r e
1
r t n H e r e

6. At Value, D0 is now zero, so we store zero in D1 and return to rtnHere.
7. At rtnHere, we unstack 1 into D0. The stack now looks like:

S u p e r B a s i c
Back
10
r t n H e r e
5
r t n H e r e
2
r t n H e r e

As D0 is odd, we add 1 to D1. The running total is now 1. Then we execute an RTS
instruction and end up back at rtnHere.

8. At rtnHere, we unstack 2 into D0. The stack now looks like:

S u p e r B a s i c
Back
10
r t n H e r e
5
r t n H e r e

As D0 is even, we don’t add 1 to D1. The running total is still 1. Then we execute an RTS
instruction and end up back at rtnHere.

9. At rtnHere, we unstack 5 into D0. The stack now looks like:

S u p e r B a s i c
Back
10
r t n H e r e

As D0 is odd, we add 1 to D1. The running total is now 2. Then we execute an RTS
instruction and end up back at rtnHere.

10. At rtnHere, we unstack 10 into D0. The stack now looks like:

S u p e r B a s i c
Back

As D0 is even, we don’t add 1 to D1. The running total is still 2. Then we execute an RTS
instruction and end up back at Back.

11. At Back we clear D0 and return to SuperBasic. The value in D1 is 2, which is the correct
value for the 11th number in the sequence.

The test code above is fine if you only need one or two values, but if your code needs lots, then a
lookup table would be a good trade off between memory usage - you need extra space for the table

4.1 Bits and Bobs 23

- and CPU resources - if you have to do lots of calculations each time. The following code sets up
a lookup table for all values from 0 to 255 - so that’s a good reason for having a single byte for
each value.

1 ; Lookup Tab le i n i t i a l i s a t i o n .
2 ;
3 ; R e g i s t e r Usage :
4 ; D0 . B = ’N’ c o u n t e r (0 − 255) .
5 ; D2 . B = INT (n / 2) , v a l u e (N) .
6 ; A2 . L = P o i n t e r t o s t a r t o f lookup t a b l e .
7
8 E n t r y b r a S t a r t ; Sk ip t h e lookup t a b l e
9

10 Lookup ds . b 256 ; Lookup t a b l e
11
12 S t a r t moveq #0 , d0 ; Value (0)
13 l e a Lookup , a2 ; Guess !
14 move . b d0 , (a2) ; Save v a l u e (0) i n t a b l e
15
16 Loop addq . b #1 , d0 ; Next ’n ’
17 bcs . s Done ; Bale o u t a t 256
18 move .w d0 , d2 ; Copy ’n ’ t o D2
19 l s r .w #1 , d2 ; INT (n / 2)
20 move . b (a2 , d2 .w) , d2 ; Value (INT (n / 2))
21 b t s t #0 , d0 ; Anyth ing t o add ?
22 beq . s S t o r e ; No , j u s t s t o r e v a l u e (n)
23 addq . b #1 , d2 ; Yes , add b i t 1
24
25 S t o r e move . b d2 , (a2 , d0 .w) ; S t o r e Value (n)
26 b r a . s Loop ; Not done y e t
27
28 Done moveq #0 , d0 ; No e r r o r s
29 r t s

Listing 4.2: Initialising the lookup table

If the program initialises the lookup table during startup, then any time it needs to extract a value,
it’s as simple as:

1 . . .
2 move .w #n , d0 ; D0 must be 0 − 255
3 l e a Lookup , a2
4 move . b (a2 , d0 .w) , d0 ; Value (d0 . b)
5 . . .

Listing 4.3: Using the lookup table to find a value

At this point, D0.B holds the result of Value(n). Keep in mind that the lookup table only gives
values between 0 and 255, but D0 is a word in the above for ease of indexing the table.

So, what’s it all about I hear you ask? It’s simple, the sequence I gave you way back at the
beginning is the number of ‘1’ bits in any byte value.

Taking 10 as an example, it is 0000 1010binwhile 5, half of 10, is 0000 0101bin- the same number
of bits. So, that works for even numbers, how about odd ones? Well, half of 5 is 2.5 bit as we are
rounding down, that’s 2. Two is 0000 0010bin Doubling 2 gives 4 or 0000 0100binand 5 is just 4
plus 1. So, the number of bits in an odd number is still the same as the number in half of it, plus

24 Chapter 4. Lookup Tables

bit 0. Simples2.

4.2 Character Characteristics

Another useful lookup table would be one which, again, covers 256 byte entries. However, instead
of values, these bytes contain up to 8 bits of ‘flag’ information. In the C/C++ programming
languages, there are numerous functions (and also, macros with the same name) which can be
used to determine if a character is a digit, upper case, lower case, printable etc. This is done with
a lookup table of bit flags.

Each character class (numeric, alphabetic etc) has one or more bits set in the table entry to indicate
if this character is indeed a digit, upper case etc. In C68 (look in the header file ctypes.h) we
have a number of bit masks defined, as follows, although I am using better names than the C68
code!

1 UPPERCASE equ 1 ; B i t 0 = A − Z
2 LOWERCASE equ 2 ; B i t 1 = a − z
3 DIGIT equ 4 ; B i t 2 = 0 − 9
4 SPACE equ 8 ; B i t 3 = space , t ab , l i n e f e e d
5 PUNCTUATION equ 16 ; B i t 4 = . , ; : e t c
6 CONTROL equ 32 ; B i t 5 = Codes < 32
7 BLANK equ 64 ; B i t 6 = space , t a b
8 HEXDIGIT equ 128 ; B i t 7 = A − F , a − f

Listing 4.4: Character attribute bit masks

So, in the lookup table for the English language, every entry between CODE(’A’) and CODE(’Z’)
will have the UPPERCASE flag, bit 0, set. They will also have the HEXDIGIT flag, bit 7, set for
‘A’ through ‘F’.

Now, I don’t know about you, but I really don’t fancy typing in 256 entries in a table, with the
possibility of getting it wrong, somewhere. That’s a nightmare scenario, so the QL can do it for
me (you, on the other hand, can simply download the code for this issue and get it for free!) I
wrote the following, simple, C68 code to generate the file I needed for assembly routines, using
my own constant values as listed above.

The following is the listing of the C68 program, characters_c:

1 # i n c l u d e < s t d i o . h>
2 # i n c l u d e < c t y p e . h>
3
4 i n t main (i n t a rgc , c h a r ∗ a rgv []) {
5 i n t x ;
6
7 p r i n t f ("UPPERCASE equ 1 ; B i t 0 = A − Z \ n ") ;
8 p r i n t f ("LOWERCASE equ 2 ; B i t 1 = a − z \ n ") ;
9 p r i n t f (" DIGIT equ 4 ; B i t 2 = 0 − 9 \ n ") ;

10 p r i n t f ("SPACE equ 8 ; B i t 3 = s p a c e t a b e t c \ n ") ;
11 p r i n t f ("PUNCTUATION equ 16 ; B i t 4 = . , ; : e t c \ n ") ;
12 p r i n t f ("CONTROL equ 32 ; B i t 5 = V a r i o u s \ n ") ;
13 p r i n t f ("BLANK equ 64 ; B i t 6 = s p a c e t a b \ n ") ;
14 p r i n t f ("HEXDIGIT equ 128 ; B i t 7 = 0 − 9 a − f A − F \ n ") ;
15 p r i n t f ("ALPHABETIC equ UPPERCASE + LOWERCASE\ n ") ;
16 p r i n t f ("ALPHANUMERIC equ ALPHABETIC + DIGIT \ n ") ;

2As the odd, occasional, passing meerkat has been know to utter!

ctypes.h
characters_c

4.2 Character Characteristics 25

17 p r i n t f ("PRINTABLE equ BLANK + PUNCTUATION + ALPHABETIC + DIGIT \ n
=⇒ ") ;

18 p r i n t f ("GRAPHIC equ PUNCTUATION + ALPHABETIC + DIGIT \ n ") ;
19
20 p r i n t f (" \ n \ n c h a r t a b ") ;
21 f o r (x = 0 ; x < 256 ; x ++) {
22 p r i n t f (" dc . b 0 ") ;
23 i f (i s c n t r l (x)) p r i n t f ("+ CONTROL ") ;
24 i f (i s u p p e r (x)) p r i n t f ("+ UPPERCASE ") ;
25 i f (i s l o w e r (x)) p r i n t f ("+ LOWERCASE ") ;
26 i f (i s d i g i t (x)) p r i n t f ("+ DIGIT ") ;
27 i f (i s x d i g i t (x)) p r i n t f ("+ HEXDIGIT ") ;
28 i f (i s p u n c t (x)) p r i n t f ("+ PUNCTUATION ") ;
29 i f (i s s p a c e (x)) p r i n t f ("+ SPACE ") ;
30 i f (x == 9 | | x == 32) p r i n t f ("+ BLANK ") ;
31 p r i n t f (" ; CHR$(%d) = ’%c ’ \ n " , x ,
32 i s p r i n t (x) ? x : ’ . ’) ;
33 }
34 r e t u r n 0 ;
35 }

Listing 4.5: C68 utility: characters_c

The code above, compiled to characters_exe, generates a file that I can use in my assembly
code. It does it much faster than I can, and more accurately to boot.

Note that C68 on the QL doesn’t have the function isblank , so I’ve hard coded the only two values
that that function applies to, tab (9) and space (32). C68 gives the following character attributes:

UpperCase 65 through 90, ‘A’ through ‘Z’;
LowerCase 97 through 122, ‘a’ through ‘z’;
Digit 48 through 57, ‘0’ through ‘9’;
Hex Digit 48 through 57, 65 through 70, 97 through 102, ‘0’ through ‘9’, ‘A’ through ‘F’, ‘a’

through ‘f’;
WhiteSpace 9 through 13, 32, Tab through Carriage Return, Space;
Blank 9 and 32, Tab and Space;
Control 33 through 47, 58 through 64, 91 through 96, 123 through 126, 128 through 191.
Puntuation 33 through 47, 58 through 64, 91 through 96, 123 through 126, 128 through 191;

The top of the generated file, which I named characters_asm_in, resembles the following:

1 UPPERCASE equ 1 ; B i t 0 = A − Z
2 LOWERCASE equ 2 ; B i t 1 = a − z
3 DIGIT equ 4 ; B i t 2 = 0 − 9
4 SPACE equ 8 ; B i t 3 = s p a c e t a b e t c
5 PUNCTUATION equ 16 ; B i t 4 = . , ; : e t c
6 CONTROL equ 32 ; B i t 5 = V a r i o u s
7 BLANK equ 64 ; B i t 6 = s p a c e t a b
8 HEXDIGIT equ 128 ; B i t 7 = 0 − 9 a − f A − F
9 ALPHABETIC equ UPPERCASE + LOWERCASE

10 ALPHANUMERIC equ ALPHABETIC + DIGIT
11 PRINTABLE equ BLANK + PUNCTUATION + ALPHABETIC + DIGIT
12 GRAPHIC equ PUNCTUATION + ALPHABETIC + DIGIT
13
14 c h a r t a b dc . b 0 + CONTROL ; CHR$ (0) = ’ . ’
15 dc . b 0 + CONTROL ; CHR$ (1) = ’ . ’
16 dc . b 0 + CONTROL ; CHR$ (2) = ’ . ’

characters_exe
characters_asm_in

26 Chapter 4. Lookup Tables

17 dc . b 0 + CONTROL ; CHR$ (3) = ’ . ’
18 dc . b 0 + CONTROL ; CHR$ (4) = ’ . ’
19 dc . b 0 + CONTROL ; CHR$ (5) = ’ . ’
20 dc . b 0 + CONTROL ; CHR$ (6) = ’ . ’
21 dc . b 0 + CONTROL ; CHR$ (7) = ’ . ’
22 dc . b 0 + CONTROL ; CHR$ (8) = ’ . ’
23 dc . b 0 + CONTROL + SPACE + BLANK ; CHR$ (9) = ’ . ’
24 dc . b 0 + CONTROL + SPACE ; CHR$(1 0) = ’ . ’
25 dc . b 0 + CONTROL + SPACE ; CHR$(1 1) = ’ . ’
26 dc . b 0 + CONTROL + SPACE ; CHR$(1 2) = ’ . ’
27 dc . b 0 + CONTROL + SPACE ; CHR$(1 3) = ’ . ’
28 . . .

Listing 4.6: Extract of the generated file characters_asm_in

Beware, however, if you view the generated file in an operating system that is not QDOSMSQ
because some of the QL character codes represent “invalid” characters in some character sets, on
PCs or Linux, for example.

So, now that the table has been created, we need some assembly code to call when we want to
check if, for example, a character code is a digit. Those character attribute functions would look
like the following. My file is named charAttr_asm_in:

1 ; A l l t h e s e f u n c t i o n s r e q u i r e a c h a r a c t e r code i n D0 . B and w i l l
2 ; r e t u r n D0 = 0 i f t h e c h a r a c t e r i s i n v a l i d , o t h e r w i s e , D0 . B w i l l be
3 ; a r e l a t i v e l y random non−z e r o v a l u e .
4 ;
5 ; ENTRY R e g i s t e r s :
6 ; D0 . B C h a r a c t e r code t o be t e s t e d
7 ;
8 ; EXIT R e g i s t e r s :
9 ; D0 . B Zero − C h a r a c t e r t e s t f a i l e d . (Z f l a g s e t)

10 ; non−z e r o − C h a r a c t e r t e s t p a s s e d .
11
12 i n w i n 1 _ s o u r c e _ c h a r a c t e r s _ a s m _ i n
13
14
15 ; Given a c h a r a c t e r code i n D0 . B , e x t r a c t t h e c h a r a c t e r a t t r i b u t e s
16 ; b i tmap from c h a r t a b i n t o D0 . B .
17 ;
18 ; Mask t h e a t t r i b u t e b i tmap wi th t h e d e s i r e d a t t r i b u t e mask t o g e t
19 ; t h e v a l i d a t i o n r e s u l t .
20 ;
21 ; Re t u r n t h e r e s u l t i n D0 . B wi th Z s e t i f t h e t e s t FAILED .
22
23 ; On t h e s t a c k we have D1 .W.
24 ; D1 . B = r e q u i r e d mask
25 ; D0 . B = c h a r a c t e r code
26 i s a n y t h i n g move . l a2 ,−(a7) ; Save t h e worker
27 l e a c h a r t a b , a2 ; C h a r a c t e r a t t r i b u t e s t a b l e
28 e x t .w d0 ; D0 must be a word wide
29 move . b (a2 , d0 .w) , d0 ; A t t r i b u t e s b i tmap b y t e
30 and . b d1 , d0 ; Do a t t r i b u t e s match ?
31 move . l (a7) + , a2 ; R e s t o r e worker
32 move .w (a7) + , d1 ; R e s t o r e t h e o t h e r worker
33 t s t . b d0 ; Z = t e s t f a i l e d
34 r t s

characters_asm_in
charAttr_asm_in

4.2 Character Characteristics 27

35
36
37 ; These j u s t s e t up t h e mask we want i n D1 .W, and jump o f f t o t h e
38 ; common code above . The u n s t a c k i n g of D1 .W and r e t u r n t o c a l l e r
39 ; i s done above .
40 i s d i g i t move .w d1 ,−(a7) ; Save t h e f i r s t worker
41 move . b #DIGIT , d1 ; Re q u i r e d a t t r i b u t e mask
42 b r a . s i s a n y t h i n g ; Never r e t u r n h e r e !
43
44 i s a l p h a move .w d1 ,−(a7) ; Save t h e f i r s t worker
45 move . b #ALPHABETIC , d1 ; Re q u i r e d a t t r i b u t e mask
46 b r a . s i s a n y t h i n g ; Never r e t u r n h e r e !
47
48 i s a l n u m move .w d1 ,−(a7) ; Save t h e f i r s t worker
49 move . b #ALPHANUMERIC, d1 ; Re q u i r e d a t t r i b u t e mask
50 b r a . s i s a n y t h i n g ; Never r e t u r n h e r e !
51
52 i s u p p e r move .w d1 ,−(a7) ; Save t h e f i r s t worker
53 move . b #UPPERCASE , d1 ; Re q u i r e d a t t r i b u t e mask
54 b r a . s i s a n y t h i n g ; Never r e t u r n h e r e !
55
56 i s l o w e r move .w d1 ,−(a7) ; Save t h e f i r s t worker
57 move .w #LOWERCASE, d1 ; Re q u i r e d a t t r i b u t e mask
58 b r a . s i s a n y t h i n g ; Never r e t u r n h e r e !
59
60 i s x d i g i t move .w d1 ,−(a7) ; Save t h e f i r s t worker
61 move . b #HEXDIGIT , d1 ; Re q u i r e d a t t r i b u t e mask
62 b r a . s i s a n y t h i n g ; Never r e t u r n h e r e !
63
64 i s p u n c t move .w d1 ,−(a7) ; Save t h e f i r s t worker
65 move . b #PUNCTUATION, d1 ; Re q u i r e d a t t r i b u t e mask
66 b r a . s i s a n y t h i n g ; Never r e t u r n h e r e !
67
68 i s c n t r l move .w d1 ,−(a7) ; Save t h e f i r s t worker
69 move . b #CONTROL, d1 ; Re q u i r e d a t t r i b u t e mask
70 b r a . s i s a n y t h i n g ; Never r e t u r n h e r e !
71
72 i s g r a p h move .w d1 ,−(a7) ; Save t h e f i r s t worker
73 move . b #GRAPHIC , d1 ; Re q u i r e d a t t r i b u t e mask
74 b r a . s i s a n y t h i n g ; Never r e t u r n h e r e !
75
76 i s p r i n t move .w d1 ,−(a7) ; Save t h e f i r s t worker
77 move . b #PRINTABLE , d1 ; Re q u i r e d a t t r i b u t e mask
78 b r a . s i s a n y t h i n g ; Never r e t u r n h e r e !
79
80 i s s p a c e move .w d1 ,−(a7) ; Save t h e f i r s t worker
81 move . b #SPACE , d1 ; Re q u i r e d a t t r i b u t e mask
82 b r a . s i s a n y t h i n g ; Never r e t u r n h e r e !
83
84 i s b l a n k move .w d1 ,−(a7) ; Save t h e f i r s t worker
85 move . b #BLANK, d1 ; Re q u i r e d a t t r i b u t e mask
86 b r a . s i s a n y t h i n g ; Never r e t u r n h e r e !

Listing 4.7: Character attributes library - charAttr_asm_in

How these work is pretty simple:

charAttr_asm_in

28 Chapter 4. Lookup Tables

• We enter with the character code to be tested in D0.B, as we will be about to trash it, we
save D1.W on the stack prior to loading its low byte with the required attribute mask that we
need for the current test.

• A branch is then made to the common code which saves A2.L as we will be using it. The
character’s attribute bitmap is then extracted from the table. This bitmap is appropriate to
the character code originally in D0.B but which we have now extended to word sized to
index into the attribute bitmap table.

• The attribute bitmap is ANDed with the desired attribute mask and the result in D0.B will be
zero if there are no common bits in the two masks - the test has failed, or non-zero if at least
one pair of common bits matched.

• The stack is then tidied and we return to the caller with the Z flag set to indicate a failure,
unusually, or unset to show that the character code in D0.B was a character which belonged
to the attribute set we were interested in - a digit, an upper case letter etc.

In your code, this can be used as follows:

1 i n c h a r A t t r _ a s m _ i n
2
3 . . .
4 move . b (a2) , d0 ; Get c h a r a c t e r code from b u f f e r
5 b s r i s a l n u m ; I s i t a l e t t e r o r d i g i t ?
6 beq . s notAlnum ; No , i t ’ s n o t
7 . . .

Listing 4.8: Using the charAttr_asm_in routines

This code is useful when writing something like a lexer (part of a compiler, assembler etc) or
where you are processing text for some reason. It can save you having to check that the character
in D0.B is less than or equal to ‘Z’ and greater or equal to ‘A’ or less than or equal to ‘z’ or greater
than or equal to ‘a’ - and so on. (Yes, I know, the 68020 has the CMP2 instruction which makes
this easier.)

4.2.1 A Final Thought

If necessary, the 256 byte table of attributes could be created, then saved as a binary file and binary
included into your application’s code, using the appropriate command for your assembler. On
GWASS this is the LIB or the INCBIN command.

For homework, you could convert the character attribute functions to be SuperBASIC extensions?
If you feel the need? Maybe?

charAttr_asm_in

5. UTF8 and the QL

UTF8 is a character set much loved, perhaps, by Linux, MacOS and increasingly, Windows com-
puters. As it happens, most of the HTML pages, as well as almost all XML files, are themselves
in UTF8 format. What is it and how does it affect the QL?

I spend more time editing files, at least to get a first draft, in Linux. When I copy the files up to
my QPC session and open them in QD, a couple of things happen:

• QD converts all my runs of 4 spaces to a tab character, even though I’ve repeatedly asked it
not to. I’m rapidly losing patience with QD!

• Some of the QL characters, happily typed on Linux, are shown as weird blobs in QD. The
UK Pound sign, for example, or the Euro are blobs in QD when they were fine on Linux.
Why?

• Writing QL files back to, say, DOS1_, then opening them in a Linux editor shows many
characters as the UTF8 character with Code Point U+0000, the black blob with a question
mark in it. Oops! Don’t even try opening a QL file with the arrow characters within, you
don’t want to go there!

5.1 UTF8 Encoding

UTF8 is an encoding standard for plain text. It is a multi-byte character set which simply means
that some characters in the set, take up more than one byte when viewed “in the raw” (or with a
hex dump). UTF8 has a big enough encoding method that all (I am led to believe) the characters in
all the languages of the world, plus all their punctuations, numbers and so on, can be represented.

UTF8 characters can be 1, 2,3 or 4 bytes long. The UK Pound sign, for example, is two bytes
- $C2A3, the Euro symbol is three bytes - $E282AC, while the humble digit seven remains as a
single byte - $37.

The rules are simple:

30 Chapter 5. UTF8 and the QL

• Each character has what is known as a “code point” and is represented by the expression
“U+nnnn” where the “nnnn” part may be two, three or four hex pairs. Single byte characters,
like the digits, are shows also as “U+nnnn” but the first two digits are zeros - “U+0037” for
our digit seven.

• ASCII characters, below 128, are represented in UTF8 by a single byte, exactly the same
as the current ASCII byte. Handy! Not on a QL of course! Code points U+0000 through
U+007F are represented here.

• ASCII characters above 128 are split into three groups.
– Code points from U+0080 through U+07FF are all two bytes long.
– Code points from U+0800 through U+FFFF are all three bytes long.
– Code points from U+10000 through U+10FFFF are all 4 bytes long.

So, how do we encode an ASCII character onto one, two, three or four bytes of UTF8? Easy!

• In ASCII, all characters with the top bit (bit 7) clear will have their UTF8 code point value,
encoded into the lower 7 bits of a single byte. In other words, 0xxxxxxx, allowing 7 bits to
encode the code point.

• Two byte UTF8 characters have the layout 110xxxxx 10xxxxxx, and this allows for 11 bits
to encode the code point within the two bytes.

• Three byte UTF8 characters have the layout 1110xxxx 10xxxxxx 10xxxxxx, allowing for
16 bits of code point information.

• Finally, four byte UTF8 characters have the layout 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx
allowing for a massive 21 bits of code point values.

So, how does that work for our examples, the digit seven, UK Pound and the Euro symbol?

The digit seven is a single byte, and is simply the current ASCII value, $37, because that already
has the top bit clear and the remaining bits holding the ASCII character, or the UTF8 code point
as it is now known.

The UK Pound, has code point U+00A3. This is higher than the highest single byte character,
U+007F, but lower than the highest for two byte characters, so it is a two byte character.

A two byte character is of the format 110xxxxx 10xxxxxx where the most significant bits of the
code point value is encoded into the bits marked with an ’x’. As the code point is simply a
hexadecimal number, U+00A3 is just 00000000 10100011 in binary, so those 8 bits get encoded
onto the ’x’ bits, giving 110xxx10 10110011. As we cannot have any spare ’x’ bits left over, those
that remain are cleared to zero, giving 11000010 10110011 which is, $C2 A3 - and that’s the
character code for a Pound Sign in UTF8.

Taking the Euro next, it has code point U+20AC which puts it into the three byte set of characters.
Those are in the format 1110xxxx 10xxxxxx 10xxxxxx. Once again, we take the code point in
binary and mask it onto the ’x’bits, filling with leading zeros as appropriate.

Code point U+20AC is 00100000 10101100 which is 16 bits as a three byte character allows for
up to 16 bits, it fits nicely without any spare ’x’ bits. The result is 11100010 10000010 10101100
or $E2 82 AC and that’s the three bytes we use for the Euro symbol.

5.2 The QL Character Set

As ever, nothing is straight forward in the QL world. Sir Clive has done his best to unstandardise
things. However, I suppose he had only 256 characters to fit ASCII and a few “foreign” characters
that might be needed in Europe. America seems to get by on only 7 bits ASCII anyway! So,

5.2 The QL Character Set 31

what’s broken in the QL’s character set?

• The UK Pound symbol is character 96 ($60) on the QL, but in ASCII it is character 163
($A3).

• The copyright symbol is character 127 ($7F) on the QL but is 169 ($A9) in ASCII.
• The Euro, which came a long time after the QL, doesn’t exist in the BBQL character set, but

under SMSQ, it is at character 181 ($B5)
• Characters above 128 ($80) are a mess on the QL. Many are simply missing, especially

some of the, I assume, lesser used accented characters.

So while my Linux editor can open files created on the QL, and the QL can open (most) files
created on the Linux side of things, it’s not completely the same. A conversion is required, one to
go from the QL to Linux (MacOS, Windows etc) and one to come back again.

I guess we need some assembly code then? Read on.

6. Ql2utf8 Utility

This utility is what I would need to use when I’ve saved a file on the QL, or in QPC, and I need to
transfer it down to the Linux box for some processing - say, for example, to get the finished and
tested source code into an article like this one!

The utility is an example of a QL program which are collectively becoming known as a “YAF”.1

The utility reads a QL created text file, where the content is any of the QL character set up to
but not above, character 191 ($BF) which is the down arrow. Anything above that is a control
character and is unprintable - undefined results may occur if any are present in the QL file.

It is executed in the usual manner:

ex r a m 1 _ q l 2 u t f 8 _ b i n , r a m 1 _ q l _ t x t , r a m 1 _ u t f 8 _ t x t

Listing 6.1: Executing ql2utf8

The input file, ram1_ql_txt will be read in, and each byte converted to the appropriate UTF8 byte
sequence, and written out to the ram1_utf8_txt file. The latter file will be used on my Linux box,
but Windows and MacOS users can also take advantage.

Right, enough waffle, on with the code.

6.1 The Code

As ever, my code starts with an introductory header and some equates. This utility is no different
as you can see below.

1 ;−−
2 ; QL2UTF8 :
3 ;
4 ; Th i s f i l t e r c o n v e r t s QL t e x t f i l e s t o UTF8 f o r use on Linux , Mac or

1Yet Another Filter!

34 Chapter 6. Ql2utf8 Utility

5 ; Windows where most modern e d i t o r s e t c , d e f a u l t t o UTF8 .
6 ;
7 ;
8 ; EX q l 2 u t f 8 _ b i n , i n p u t _ f i l e , o u t p u t _ f i l e _ o r _ c h a n n e l
9 ;

10 ;−−
11 ; 2 6 / 0 9 / 2 0 1 9 NDunbar C r e a t e d f o r QDOSMSQ Assembly M a i l i n g L i s t
12 ;−−
13 ; (c) Norman Dunbar , 2019 . P e r m i s s i o n g r a n t e d f o r u n l i m i t e d use
14 ; o r abuse , w i t h o u t a t t r i b u t i o n b e i n g r e q u i r e d . J u s t e n j o y !
15 ;−−
16
17 ; How many c h a n n e l s do I want ?
18 numchans equ 2 ; How many c h a n n e l s r e q u i r e d ?
19
20
21 ; S t a c k s t u f f .
22 s o u r c e I d equ $02 ; O f f s e t (A7) t o i n p u t f i l e i d
23 d e s t I d equ $06 ; O f f s e t (A7) t o o u t p u t f i l e i d
24
25 ; Othe r V a r i a b l e s
26 pound equ 96 ; UK Pound s i g n .
27 c o p y r i g h t equ 127 ; (c) s i g n .
28 g r a v e equ 159 ; B a c k t i c k / Grave a c c e n t .
29 eu ro equ 181 ; Euro symbol
30 e r r _ b p equ −15
31 e r r _ e o f equ −10
32 me equ −1
33 t i m e o u t equ −1

Listing 6.2: Ql2utf8: Introductory comments

The main entry point for the program is next. This section of code contains the usual QDOS Job
header and a few checks to ensure that we only get a pair of channel IDs on the stack. If the user
decided to pass over a command string as well, it would be ignored.

34 ; ==
35 ; Here b e g i n s t h e code .
36 ;−−
37 ; S t a c k on e n t r y :
38 ;
39 ; $06 (a7) = Outpu t f i l e c h a n n e l i d .
40 ; $02 (a7) = Source f i l e c h a n n e l i d .
41 ; $00 (a7) = How many c h a n n e l s ? Should be $02 .
42 ; ==
43 s t a r t b r a . s c h e c k S t a c k
44
45 dc . l $00
46 dc .w $4afb
47 name dc .w name_end−name−2
48 dc . b ’QL2UTF8 ’
49 name_end equ ∗
50
51 v e r s i o n dc .w vers_end−v e r s i o n −2
52 dc . b ’ V e r s i o n 1 . 0 0 ’
53 v e r s _ e n d equ ∗
54

6.1 The Code 35

55
56 b a d _ p a r a m e t e r
57 moveq # e r r_bp , d0 ; Guess !
58 b r a e r r o r E x i t ; Die h o r r i b l y
59
60
61 ;−−
62 ; Check t h e s t a c k on e n t r y . We on ly r e q u i r e NUMCHAN c h a n n e l s − any
63 ; t h i n g o t h e r t h a n NUMCHANS w i l l r e s u l t i n a BAD PARAMETER e r r o r on
64 ; e x i t from EW (b u t n o t from EX) .
65 ;−−
66 c h e c k S t a c k
67 cmpi .w #numchans , (a7) ; Two c h a n n e l s i s a must
68 bne . s b a d _ p a r a m e t e r ; Oops

Listing 6.3: Ql2utf8: Job header and initialisation

Next up is some initialisation. In this short section of code, a couple of registers are set to values
which will be used throughout the entire utility.

69 ;−−
70 ; I n i t i a l i s e a c o u p l e o f r e g i s t e r s t h a t w i l l keep t h e i r v a l u e s a l l
71 ; t h r o u g h t h e r e s t o f t h e code .
72 ;−−
73 q l 2 u t f 8
74 l e a u t f 8 , a2 ; P r e s e r v e d t h r o u g h o u t
75 moveq # t i m e o u t , d3 ; Timeout , a l s o P r e s e r v e d

Listing 6.4: Ql2utf8: Initialising constant registers

And now we have the top of the main loop for the program. We start here by initialising the various
registers to be able to read a single byte from the input channel. The ID for that file is on the stack
at offset 2 from the current value in register A7.

Once a byte has been read we check the error code in D0, and if it shows no errors, we can get
on with the translation. If D0 is showing an error, and it happens to be End Of File, we bale out
of the program and return success to SuperBASIC, Other errors will return the appropriate error
code to SuperBASIC, but that will only be seen if the utility was executed with EXEC_W or EW,
or equivalent.

77 ;−−
78 ; The main loop s t a r t s h e r e . Read a s i n g l e byte , check f o r EOF e t c .
79 ;−−
80 readLoop
81 moveq # i o _ f b y t e , d0 ; F e t c h one b y t e
82 move . l s o u r c e I D (a7) , a0 ; Channel t o readLoop
83 t r a p #3 ; Do i n p u t
84 t s t . l d0 ; OK?
85 beq . s t e s t B i t 7 ; Yes
86 cmpi . l #ERR_EOF , d0 ; A l l done ?
87 beq a l l D o n e ; Yes .
88 b r a e r r o r E x i t ; Oops !

Listing 6.5: Ql2utf8: Top of the loop - reading bytes

The first check is to test it bit 7 of the character just read, is set or not. It it is set then the chances
are that it is a multi-byte character. If it is clear, then we continue processing.

36 Chapter 6. Ql2utf8 Utility

89 t e s t B i t 7
90 b t s t #7 , d1 ; B i t 7 s e t ?
91 bne . s twoBytes ; M u l t i Byte c h a r a c t e r i f so

Listing 6.6: Ql2utf8: One byte? Or More?

Right then, at this point the top bit must be clear, so we are looking at a single byte character,
or are we? The QL has a few little exceptions to the rule as it uses different character codes to
standard (if there is such a thing) ASCII.

The first exception is the UK Pound sign, which is a two byte character in UTF8. The code below
checks and processes a Pound sign, if one is found. After writing out the UTF8 codes, it loops
back to the start of the main loop, ready for the next character.

92 ;−−
93 ; The UK Pound and c o p y r i g h t s i g n s a r e e x c e p t i o n s t o t h e " b y t e s
94 ; l e s s t h a n $80 a r e t h e same i n UTF8 as t h e y a r e i n ASCII " r u l e a s
95 ; S i r C l i v e didn ’ t f o l l o w ASCII 100%. Both c h a r a c t e r s a r e m u l t i−b y t e
96 ; i n UTF8 .
97 ;−−
98 t e s t P o u n d
99 b t s t #7 , d1 ; P o t e n t i a l m u l t i−b y t e c h a r a c t e r ?

100 bne . s twoBytes ; Yes
101 cmpi . b #pound , d1 ; Got a UK Pound s i g n ?
102 bne . s t e s t C o p y r i g h t ; No .
103
104 gotPound
105 move . b #$c2 , d1 ; Pound i s $C2A3 i n UTF8 .
106 b s r . s w r i t e B y t e ; Wr i t e f i r s t b y t e
107 move . b #$a3 , d1
108 b s r . s w r i t e B y t e ; Wr i t e second b y t e
109 b r a . s readLoop

Listing 6.7: Ql2utf8: Handling the UK Pound

The next exception is the copyright symbol. It too is a multi byte character in UTF8 so the code
below checks for it and deals with it appropriately.

110 ;−−
111 ; Here we r e p e a t t h e same check as above , i n c a s e we have t h e
112 ; c o p y r i g h t s i g n .
113 ;−−
114 t e s t C o p y r i g h t
115 cmpi . b # c o p y r i g h t , d1 ; Got a c o p y r i g h t s i g n ?
116 bne . s oneByte ; No .
117
118 g o t C o p y r i g h t
119 move . b #$c2 , d1 ; C o p y r i g h t i s $C2A9 i n UTF8 .
120 b s r . s w r i t e B y t e ; Wr i t e f i r s t b y t e
121 move . b #$a9 , d1
122 b s r . s w r i t e B y t e ; Wr i t e second b y t e
123 b r a . s readLoop

Listing 6.8: Ql2utf8: Handling copyright

That’s all the QL characters that are exceptions to the “ASCII characters below code 128 are
single byte in UTF8” rule. The remaining QL characters less than code 128 are dealt with by

6.1 The Code 37

simply calling the routine to write a single byte and then heading back to the top of the main loop.
Job done.

125 ;−−
126 ; A l l o t h e r ASCII c h a r a c t e r s , below $80 , a r e s i n g l e b y t e i n UTF8 and
127 ; a r e t h e same code as i n ASCII .
128 ;−−
129 oneByte
130 b s r . s w r i t e B y t e ; S i n g l e b y t e r e q u i r e d i n UTF8
131 b r a . s readLoop

Listing 6.9: Ql2utf8: handling low value ASCII codes

Speaking of writing a single byte, the following code does exactly that. It fetches the channel ID
for the output channel from the stack. Normally, this would be at offset “destId” on from A7, but
as this code is always called as a subroutine, there is an extra 4 bytes on the stack for the calling
code’s return address, so that has to be considered.

All the following snippet has to do is set up the registers to enable the trap call, IO_SBYTE, to be
called. D3, the timeout, is already set to -1, and will be preserved on return, as will D2, which is
being used elsewhere in the code to safely hold a value during processing.

132 ;−−
133 ; A s m a l l b u t p e r f e c t l y formed s u b r o u t i n e t o send t h e b y t e i n D1 t o
134 ; t h e o u t p u t c h a n n e l .
135 ; BEWARE: Th i s i s c a l l e d wi th an e x t r a 4 b y t e s on t h e s t a c k !
136 ;−−
137 w r i t e B y t e
138 moveq # i o _ s b y t e , d0 ; Send one b y t e
139 move . l 4+ d e s t I d (a7) , a0 ; Outpu t c h a n n e l i d
140 t r a p #3
141 t s t . l d0 ; OK?
142 bne . s e r r o r E x i t ; Oops !
143 r t s

Listing 6.10: Ql2utf8: Writing one byte of UTF8

As mentioned above, we have processed all the QL characters that are a single byte in UTF8,
so now we need to think about those characters with codes above 127, the majority of these are
accented characters and as the QL doesn’t cover all the “standard” ones, there is some “furkling
about”2 to be done.

The QL wouldn’t be the QL we know and love if there were not a couple of exceptions to the rule
that “ASCII characters above code 128 are always multi-byte”. The grave (no, not somewhere you
bury people, the accent much loved by the French I believe) aka the backtick (at least on Unix,
Linux etc) is actually a single byte character in UTF8, so that is dealt with first.

We arrive at the following code whenever a character is read in which has the top bit, bit 7, set.

The code begins by checking for and processing a grave character.

144 ;−−
145 ; ASCII codes from $80 upwards r e q u i r e m u l t i p l e b y t e s i n UTF8 . In t h e
146 ; c a s e o f t h e QL, t h e s e a r e mos t l y 2 b y t e s long . I c o u l d use IO_SSTRG
147 ; here , I know .
148 ; However , a s ever , t h e r e a r e e x c e p t i o n s . The g r a v e a c c e n t (b a c k t i c k)

2That would be a technical term!

38 Chapter 6. Ql2utf8 Utility

149 ; i s a s i n g l e b y t e on o u t p u t , w h i l e t h e 4 ar row keys a r e t h r e e b y t e s .
150 ; The b y t e s t o be s e n t a r e r e a d from a t a b l e because , aga in , t h e QL
151 ; i s n o t u s i n g t h e f u l l s e t o f a c c e n t e d c h a r a c t e r s − so t h e r e i s
152 ; mucking a b o u t t o be done .
153 ;−−
154 twoBytes
155 cmpi . b # grave , d1 ; B a c k t i c k / Grave a c c e n t ?
156 bne . s t e s t E u r o ; No .
157
158 ;−−
159 ; We a r e d e a l i n g wi th a b a c k t i c k c h a r a c t e r (aka Grave a c c e n t) ?
160 ;−−
161 go tGrave
162 move . b #pound , d1 ; Grave i n = pound o u t !
163 b s r . s w r i t e B y t e ; S i n g l e b y t e r e q u i r e d
164 b r a readLoop ; Do t h e r e s t

Listing 6.11: Ql2utf8: Handling exceptions - the Grave/backtick

From here on in we should be dealing with all the two byte characters for UTF8, however, those
exceptions are popping up again. The first is the Euro symbol. This is missing from the original
128Kb QLs of old, as the Euro didn’t even exist when they were conceived, however, in SMSQ,
they have been allocated character 181 - which, when you look at it in Pennel or similar, is a
seriously weird character which I’ve never seen used, so I think the SMSQ authors chose well!

In UTF8 the Euro needs three characters, $E282AC, so the following section of code does the
necessary checking and handling of a Euro character.

165 ;−−
166 ; Here we r e p e a t t h e same check as above , i n c a s e we have t h e
167 ; Euro s i g n .
168 ;−−
169 t e s t E u r o
170 cmpi . b # euro , d1 ; Got a Euro s i g n ?
171 bne . s t e s t A r r o w s ; No .
172
173 go tEuro
174 move . b #$e2 , d1 ; Euro i s $E282AC i n UTF8 .
175 b s r . s w r i t e B y t e ; Wr i t e f i r s t b y t e
176 move . b #$82 , d1
177 b s r . s w r i t e B y t e ; Wr i t e second b y t e
178 move . b # $ac , d1
179 b s r . s w r i t e B y t e ; Wr i t e t h i r d b y t e
180 b r a . s readLoop

Listing 6.12: Ql2utf8: Handling exceptions - the Euro Currency symbol

Finally, in our exception handling code, the 4 arrow keys. These too are three bytes long in UTF8,
$E2869x, where the ’x’ nibble is 0, 1, 2 or 3 depending on the arrow’s direction. Just to be
awkward, the QL’s arrow order is different to UTF8 - on the QL the ascending character codes are
for the Left, Right, Up, Down arrows, but in UTF8 they are ordered Left, Up, Right, Down.

The code snippet below handles the arrow keys.

181 ;−−
182 ; The a r ro ws a r e $BC , $BD , $BE and $BF (l e f t , r i g h t , up , down) . These
183 ; a r e t h r e e b y t e s i n UTF8 , $E2 $86 $9x where ’x ’ i s 0 , 2 , 1 o r 3 .

6.1 The Code 39

184 ;−−
185 t e s t A r r o w s
186 move . b d1 , d2 ; Copy c h a r a c t e r code
187 s u b i . b #$bc , d2 ; Anyth ing lower = C s e t
188 bcs . s no tArrows ; And i s n o t an ar row
189 s u b i . b #4 , d2 ; Arrows = 0−3. C c l e a r i s bad
190 bcc . s no tArrows ; S t i l l n o t an ar row .
191
192 gotArrows
193 s u b i . b #$bc , d1 ; D1 = 0 t o 3
194 l e a ar rows , a3 ; Arrow t a b l e
195 move . b d1 , d2 ; Save i n d e x i n t o t a b l e
196 e x t .w d2 ; Need word n o t b y t e
197
198 move . b #$e2 , d1 ; F i r s t b y t e
199 b s r . s w r i t e B y t e
200 move . b #$86 , d1 ; Second b y t e
201 b s r . s w r i t e B y t e
202 move . b 0 (a3 , d2 .w) , d1 ; T h i r d b y t e
203 b s r . s w r i t e B y t e
204 b r a readLoop ; Go around a g a i n .

Listing 6.13: Ql2utf8: Handling exceptions - the arrow characters

The arrow key’s third byte is located in the following tiny table which has the correct third byte
for the appropriate arrow’s code on the QL.

206 ;−−
207 ; We need t h i s a s a r ro ws i n t h e QL a r e Lef t , Right , Up , Down b u t i n
208 ; UTF8 t h e y a r e Le f t , Up , Right , Down . Sigh .
209 ;−−
210 a r ro w s
211 dc . b $90 , $92 , $91 , $93 ; Awkward b y t e o r d e r !

Listing 6.14: Ql2utf8: The arrow character table

That is now, all the two byte exceptions catered for. The remainder of the higher ASCII characters
are all two bytes in size. Obviously, being the QL, these are not in the same order as the originating
ASCII codes would be, had Sir Clive done the decent thing and used a standard ASCII code page!
Instead he chose to omit some characters and rearrange the others into a non-standard order.3

The following code simply copies the character code from D1 to D2 and then manipulates D2 to
go from an index into the table, to an offset into the table where a pair of bytes can be found that
represent the UTF8 code for the current character.

As we are dealing with character codes from 128 ($80) onwards, we start by subtracting $80 from
the character code. This gives the correct index into the table. As each entry in the table is two
bytes, we double the index to get the correct offset, then pick up the two bytes there and send them
on their way to the output file, before heading back to the start of the main loop.

212 ;−−
213 ; Now we a r e c e r t a i n , e v e r y t h i n g i s two b y t e s . Read them from t h e
214 ; t a b l e and w r i t e them o u t .
215 ;−−
216 notArrows

3Ok, fair play, there probably wasn’t a standard ASCII code page he could use back then.

40 Chapter 6. Ql2utf8 Utility

217 move . b d1 , d2 ; D2 = b y t e j u s t r e a d
218 s u b i . b #$80 , d2 ; A d j u s t f o r t a b l e i n d e x
219 e x t .w d2 ; Word s i z e needed
220 l s l .w #1 , d2 ; Double D2 f o r O f f s e t
221 move . b 0 (a2 , d2 .w) , d1 ; F i r s t b y t e
222 b s r . s w r i t e B y t e ; Send i t o u t p u t
223 addq . b #1 , d2
224 move . b 0 (a2 , d2 .w) , d1 ; Second b y t e
225 b s r . s w r i t e B y t e ; Send i t o u t t o o
226 b r a readLoop ; Go around .

Listing 6.15: Ql2utf8: Two byte characters

The code below is the usual tidy up and bale out code. It doesn’t require much explanation as you
will have seen it before, many times.

227 ;−−
228 ; No e r r o r s , e x i t q u i e t l y back t o SuperBASIC .
229 ;−−
230 a l l D o n e
231 moveq #0 , d0
232
233 ;−−
234 ; We have h i t an e r r o r so we copy t h e code t o D3 t h e n e x i t v i a a
235 ; f o r c i b l e remova l o f t h i s j o b . EXEC_W/EW w i l l d i s p l a y t h e e r r o r i n
236 ; SuperBASIC , b u t EXEC/EX w i l l n o t .
237 ;−−
238 e r r o r E x i t
239 move . l d0 , d3 ; E r r o r code we want t o r e t u r n
240
241 ;−−
242 ; K i l l mys e l f when an e r r o r was d e t e c t e d , o r a t EOF .
243 ;−−
244 s u i c i d e
245 moveq # m t _ f r j o b , d0 ; Th i s j o b w i l l d i e soon
246 moveq #me , d1
247 t r a p #1

Listing 6.16: Ql2utf8: Clean up and exit handling

Finally, the table of two byte values for the multi-byte characters. Those which have a word of
$0000 are exceptions, dealt with elsewhere. And finally, the table only goes as far as character 191
($BF) as everything that follows is unprintable and unlikely to ever get into a QL text file. This
basically means that if you do manage to do this, the output will be “undefined” - as they say!

248 ;−−
249 ; The f o l l o w i n g t a b l e c o n t a i n s t h e two b y t e s e q u e n c e s r e q u i r e d f o r
250 ; QL c h a r a c t e r s above $80 . These a r e a l l 2 b y t e s i n UTF8 , so q u i t e a
251 ; s i m p l e c a s e . (Not when c o n v e r t i n g UTF8 t o QL though !)
252 ;−−
253 u t f 8
254 dc .w $c3a4 ; a umlau t
255 dc .w $c3a3 ; a t i l d e
256 dc .w $c3a2 ; a c i r c u m f l e x
257 dc .w $c3a9 ; e a c u t e
258 dc .w $c3b6 ; o umlau t
259 dc .w $c3b5 ; o t i l d e

6.1 The Code 41

260 dc .w $c3b8 ; o s l a s h
261 dc .w $c3bc ; u umlau t
262 dc .w $c3a7 ; c c e d i l l a
263 dc .w $c3b1 ; n t i l d e
264 dc .w $c3a6 ; ae l i g a t u r e
265 dc .w $c593 ; oe l i g a t u r e
266 dc .w $c3a1 ; a a c u t e
267 dc .w $c3a0 ; a g r a v e
268 dc .w $c3a2 ; a c i r c u m f l e x
269 dc .w $c3ab ; e umlau t
270 dc .w $c3a8 ; e g r a v e
271 dc .w $c3aa ; e c i r c u m f l e x
272 dc .w $ c 3 a f ; i umlau t
273 dc .w $c3ad ; i a c u t e
274 dc .w $c3ac ; i g r a v e
275 dc .w $c3ae ; i c i r c u m f l e x
276 dc .w $c3b3 ; o a c u t e
277 dc .w $c3b2 ; o g r a v e
278 dc .w $c3b4 ; o c i r c u m f l e x
279 dc .w $c3ba ; u a c u t e
280 dc .w $c3b9 ; u g r a v e
281 dc .w $c3bb ; u c i r c u m f l e x
282 dc .w $ceb2 ; B as i n s s (German)
283 dc .w $c2a2 ; Cent
284 dc .w $c2a5 ; Yen
285 dc .w $0000 ; Grave a c c e n t − s i n g l e b y t e
286 dc .w $c384 ; A umlau t
287 dc .w $c383 ; A t i l d e
288 dc .w $c385 ; A c i r c l e
289 dc .w $c389 ; E a c u t e
290 dc .w $c396 ; O umlau t
291 dc .w $c395 ; O t i l d e
292 dc .w $c398 ; O s l a s h
293 dc .w $c39c ; U umlau t
294 dc .w $c387 ; C c e d i l l a
295 dc .w $c391 ; N t i l d e
296 dc .w $c386 ; AE l i g a t u r e
297 dc .w $c592 ; OE l i g a t u r e
298 dc .w $ceb1 ; a l p h a
299 dc .w $ceb4 ; d e l t a
300 dc .w $ceb8 ; t h e t a
301 dc .w $cebb ; lambda
302 dc .w $c2b5 ; micro (mu?)
303 dc .w $cf80 ; PI
304 dc .w $cf95 ; o p i p e
305 dc .w $c2a1 ; ! u p s i d e down
306 dc .w $c2bf ; ? u p s i d e down
307 dc .w $0000 ; Euro
308 dc .w $c2a7 ; S e c t i o n mark
309 dc .w $c2a4 ; Cur rency symbol
310 dc .w $c2ab ; <<
311 dc .w $c2bb ; >>
312 dc .w $c2ba ; Degree
313 dc .w $c3b7 ; D iv id e

Listing 6.17: Ql2utf8: The UTF8 “two byte” character table

7. Utf82ql Utility

Uisng the Ql2utf8 utility, from the previous chapter, I now have the ability to edit a QL created text
file, on my Linux laptop, and perhaps, to use it in creating a chapter of this ePeriodical. However,
it is also possible that I might just be very used to using my Linux editor and want to do my editing
in Linux. If so, I now need a way to convert the UTF8 text in the edited file, back to the character
set desired by the QL - enter the Utf82ql utility.

This utility is yet another example of a “YAF”.1

The utility reads a text file encoded in UTF8, and converts what it finds back into QL “speak”. It
is executed in the usual manner:

ex r a m 1 _ u t f 8 2 q l 2 _ b i n , r a m 1 _ u t f 8 _ t x t , r a m 1 _ q l _ t x t

Listing 7.1: Executing utf82ql

The input file, ram1_utf8_txt will be read in, and each code point converted to the appropriate QL
single byte, and written out to the ram1_ql_txt file. The latter file will be used on my QPC setup
on Linux - to be assembled, compiled, etc.

On with the code.

7.1 The Code

As ever, my code starts with an introductory header and some equates. This utility is no different
as you can see below.

1 ;−−
2 ; UTF82QL :
3 ;
4 ; Th i s f i l t e r c o n v e r t s UTF8 t e x t f i l e s from Linux , Mac or Windows t o

1Yet Another Filter!

44 Chapter 7. Utf82ql Utility

5 ; t o t h e SMSQ c h a r a c t e r s e t .
6 ;
7 ;
8 ; EX u t f 8 2 q l 2 _ b i n , i n p u t _ f i l e , o u t p u t _ f i l e _ o r _ c h a n n e l
9 ;

10 ;−−
11 ; 2 8 / 0 9 / 2 0 1 9 NDunbar C r e a t e d f o r QDOSMSQ Assembly M a i l i n g L i s t
12 ;−−
13 ; (c) Norman Dunbar , 2019 . P e r m i s s i o n g r a n t e d f o r u n l i m i t e d use
14 ; o r abuse , w i t h o u t a t t r i b u t i o n b e i n g r e q u i r e d . J u s t e n j o y !
15 ;−−
16
17 ; How many c h a n n e l s do I want ?
18 numchans equ 2 ; How many c h a n n e l s r e q u i r e d ?
19
20
21 ; S t a c k s t u f f .
22 s o u r c e I d equ $02 ; O f f s e t (A7) t o i n p u t f i l e i d
23 d e s t I d equ $06 ; O f f s e t (A7) t o o u t p u t f i l e i d
24
25 ; Othe r V a r i a b l e s
26 u t f8Pound equ $c2a3 ; UTF8 Pound s i g n
27 qlPound equ 96 ; QL Pound s i g n
28
29 u t f 8 G r a v e equ 96 ; UTF8 Grave code
30 q lGrave equ 159 ; QL Grave code
31
32 u t f 8 C o p y r i g h t equ $c2a9 ; UTF8 c o p y r i g h t
33 q l C o p y r i g h t equ 127 ; QL c o p y r i g h t s i g n
34
35 q lE u r o equ 181 ; SMSQ Euro symbol
36
37 e r r _ e x p equ −17
38 e r r _ b p equ −15
39 e r r _ e o f equ −10
40 e r r _ o r equ −4
41 me equ −1
42 t i m e o u t equ −1

Listing 7.2: Utf82Ql: Introductory comments

The code above has a few equates for the various exceptions to the normal rules of ASCII and/or
UTF8, namely that the UK Pound sign and the copyright sign are both multi-byte in UTF8 but
single byte below CHR$(128) on the QL. In addition, the grave accent (aka backtick) should be a
two byte character in UTF8 but is actually just a single byte. I blame Sir Clive Sinclair!

Moving on, the code proper starts with the obligatory job header, and a couple of lines to handle
bad parameter errors.

43 ; ==
44 ; Here b e g i n s t h e code .
45 ;−−
46 ; S t a c k on e n t r y :
47 ;
48 ; $06 (a7) = Outpu t f i l e c h a n n e l i d .
49 ; $02 (a7) = Source f i l e c h a n n e l i d .
50 ; $00 (a7) = How many c h a n n e l s ? Should be $02 .

7.1 The Code 45

51 ; ==
52 s t a r t b r a . s c h e c k S t a c k
53
54 dc . l $00
55 dc .w $4afb
56 name dc .w name_end−name−2
57 dc . b ’UTF82QL ’
58 name_end equ ∗
59
60 v e r s i o n dc .w vers_end−v e r s i o n −2
61 dc . b ’ V e r s i o n 1 . 0 0 ’
62 v e r s _ e n d equ ∗
63
64
65 b a d _ p a r a m e t e r
66 moveq # e r r_bp , d0 ; Guess !
67 b r a e r r o r E x i t ; Die h o r r i b l y

Listing 7.3: Utf82Ql: Job header

As with normal “YAF”s we should check to determine if we received enough open channels on
the stack at execution time, in this case we desire two channels - one for the UTF8 text and the
output file for the QL text. If we don’t get exactly two channels, we bale out via the bad parameter
handler above.

It should be said that these error returns will only show up if you execute the code with EXEC_W
or EW as running them under EXEC or EX doesn’t let you see the errors from the job, only from
the command itself.

68 ;−−
69 ; Check t h e s t a c k on e n t r y . We on ly r e q u i r e NUMCHAN c h a n n e l s − any
70 ; t h i n g o t h e r t h a n NUMCHANS w i l l r e s u l t i n a BAD PARAMETER e r r o r on
71 ; e x i t from EW (b u t n o t from EX) .
72 ;−−
73 c h e c k S t a c k
74 cmpi .w #numchans , (a7) ; Two c h a n n e l s i s a must
75 bne . s b a d _ p a r a m e t e r ; Oops

Listing 7.4: Utf82Ql: Testing for two channels

The next code snippet sets up a few registers which will hold their values throughout the execution
of the code, so we do this initialisation once, right here, and stop worrying about them from this
point on. Register A2 will be pointed at a table of two byte, UTF8 code points, D3 will hold the
infinite timeout value while A4 and A5 will hold the channel IDs for the input and output files
passed to the utility.

77 ;−−
78 ; I n i t i a l i s e a c o u p l e o f r e g i s t e r s t h a t w i l l keep t h e i r v a l u e s a l l
79 ; t h r o u g h t h e r e s t o f t h e code .
80 ;−−
81 q l 2 u t f 8
82 l e a u t f 8 , a2 ; P r e s e r v e d t h r o u g h o u t
83 moveq # t i m e o u t , d3 ; Timeout , a l s o P r e s e r v e d
84 move . l s o u r c e I d (a7) , a4 ; Channel ID f o r UTF8 i n p u t f i l e
85 move . l d e s t I d (a7) , a5 ; Channel ID f o r QL o u t p u t f i l e

Listing 7.5: Utf82Ql: Initialising constant registers

46 Chapter 7. Utf82ql Utility

Now we are into the meaty stuff - the top of the main loop is next. It starts by reading a single byte
from the UTF8 file and if no errors occurred, skips the error checking code.

If the input file is now exhausted, we are done, and skip to the end where we close the files and
exit, otherwise there must have been a heinous error detected, so we bale out via “errorExit”.

86 ;−−
87 ; The main loop s t a r t s h e r e . Read a s i n g l e byte , check f o r EOF e t c .
88 ;−−
89 readLoop
90 b s r r e a d B y t e ; Read one b y t e
91 beq . s t e s t B i t 7 ; No e r r o r s i s good .
92 cmpi . l #ERR_EOF , d0 ; A l l done ?
93 beq a l l D o n e ; Yes .
94 b r a e r r o r E x i t ; Oops !

Listing 7.6: Utf82Ql: The main loop starts

As discussed previously, UTF8 is a multi-byte character set. Each character can be one, two, three
or four bytes, but the code snippet below is checking for single byte characters which always have
bit 7 cleared. If bit 7 is set, we are always dealing with multi-byte characters, so we handle those
elsewhere.

95 ;−−
96 ; T e s t t h e t o p b i t h e r e . I f i t i s ze ro , we a r e good f o r most s i n g l e
97 ; b y t e c h a r a c t e r s , o t h e r w i s e i t i s p o t e n t i a l l y m u l t i−b y t e .
98 ;−−
99 t e s t B i t 7

100 b t s t #7 , d1 ; B i t 7 s e t ?
101 bne . s m u l t i B y t e s ; M u l t i Byte c h a r a c t e r i f so

Listing 7.7: Utf82Ql: Testing for one byte UTF characters

As ever, Sir Clive has helped make life a tad difficult for us in modern times, so there are QL based
exceptions to the rules governing conversion of ASCII to UTF8 (and vice versa of course) so here
we start by dealing with the first exception - the grave accent, or backtick, character.

The grave is a single byte UTF8 character, but on the QL it is in a position that would normally
make it a two byte character. If we found a UTF8 grave, we load D1 with the QL’s ASCII code
and drop in to the following lines of code.

102 ;−−
103 ; In UTF8 , t h e Grave a c c e n t (b a c k t i c k) i s a s i n g l e b y t e c h a r a c t e r b u t
104 ; t h e b y t e v a l u e doesn ’ t c o r r e s p o n d t o t h a t on t h e QL . On UTF8 i t i s
105 ; $60 (9 6) b u t on t h e QL i t i s $9F (1 5 9) so , t h i s i s a n o t h e r S i r
106 ; C l i v e i n d u c e d e x c e p t i o n !
107 ;−−
108 t e s t G r a v e
109 cmpi . b # u t f8Grave , d1 ; Got a g r a v e !
110 bne . s oneByte ; Must be a s i n g l e b y t e i f n o t a pound .
111
112 go tGrave
113 move . b # qlGrave , d1 ; Wr i t e a g r a v e c h a r a c t e r

Listing 7.8: Utf82Ql: Handling exceptions - the grave/backtick character

The grave/backtick is the only single byte exception we need to handle and the following couple
of lines writes the character in D1 to the output file, here it is the grave/backtick, and loops back

7.1 The Code 47

to the head end of the main loop. If the code at “writeByte” detects an error, it will never return
here.

114 ;−−
115 ; The b y t e r e a d i s a v a l i d s i n g l e b y t e c h a r a c t e r so i t has t h e e x a c t
116 ; same code i n t h e QL’ s v a r i a t i o n o f ASCII , j u s t w r i t e i t o u t .
117 ;−−
118 oneByte
119 b s r w r i t e B y t e ; Wr i t e t h e b y t e o u t
120 b r a . s readLoop ; And c o n t i n u e .

Listing 7.9: Utf82Ql: Handling one byte UTF characters

The code above will be used as a quick “write and loop” entry point for a few more options later
on when handling two byte exceptions such as the UK Pound and the copyright symbols, as well
as all the other non-exception single byte characters from the UTF8 file.

That’s all the single byte processing taken care of, the next section of code starts filtering out the
two and three byte sequences that we need. As explained previously, two byte UTF8 characters
have the first byte’s top 3 bits set to 110 - this next snippet checks for that.

121 ;−−
122 ; Most o f t h e r e m a i n i n g c h a r a c t e r s w i l l be two b y t e s i n UTF8 and one
123 ; b y t e on t h e QL . There a r e a few e x c e p t i o n s though − t h e Euro and
124 ; t h e f o u r ar row keys a r e t h r e e b y t e s long i n UTF8 .
125 ;−−
126 m u l t i B y t e s
127 move . b d1 , d2 ; Copy c h a r a c t e r code
128 a n d i . b #%11100000 , d2 ; Keep t o p t h r e e b i t s
129 cmpi . b #%11000000 , d2 ; Two b y t e s ?
130 beq . s twoBytes ; Yes .

Listing 7.10: Utf82Ql: Testing for two byte UTF characters

If the byte read in did have 110 in the top three bits, it’s definitely a two byte character, so we skip
off elsewhere to handle that - and the exceptions of course!

The next section of code looks for 1110 in the top 4 bits which always indicates a three byte
character. We are only interested in a few of these though, the Euro and the four arrow keys.

131 ;−−
132 ; We a r e i n t e r e s t e d i n a few t h r e e b y t e c h a r a c t e r s , so we check t h o s e
133 ; n e x t . These a r e i d e n t i f i e d by t h e t o p n i b b l e o f t h e f i r s t c h a r a c t e r
134 ; r e a d i n b e i n g 1110 .
135 ;−−
136 t e s t T h r e e
137 move . b d1 , d2 ; Copy c h a r a c t e r code
138 a n d i . b #%11110000 , d2 ; Keep t o p f o u r b i t s
139 cmpi . b #%11100000 , d2 ; Three b y t e s ?
140 beq . s t h r e e B y t e s ; Yes .

Listing 7.11: Utf82Ql: Testing for three byte UTF characters

As mentioned above, we don’t care about four byte character as we can’t handle those in the
QL - we don’t have the appropriate characters, so the next section of code simply treats all other
first byte characters as errors by exiting the utility with an “Out of range” error. Again you need
EXEC_W to see these errors.

48 Chapter 7. Utf82ql Utility

141 ;−−
142 ; I f we g e t here , i t ’ s n o t a v a l i d two or t h r e e b y t e c h a r a c t e r , so i t
143 ; i s , e f f e c t i v e l y , an e r r o r , so we b a l e o u t wi th
144 ;−−
145 moveq # e r r _ o r , d0 ; Out o f r a n g e e r r o r code
146 b r a e r r o r E x i t ; And e x i t w i th e r r o r .

Listing 7.12: Utf82Ql: Error out on UTF8 four byte characters

Moving on. The following code handles the processing required for all two byte UTF8 characters.
The leading byte is already in D1 but we need the next byte from the file to determine which
character we have. The two bytes are then merged into a word in register D2.

147 ;−−
148 ; At t h i s p o i n t we s h o u l d have a UTF8 two b y t e c h a r a c t e r b u t we on ly
149 ; have t h e f i r s t b y t e i n D1 . We need t h e second b y t e a l s o , so r e a d i t
150 ; and check t h a t i t i s i n d e e d v a l i d .
151 ;−−
152 twoBytes
153 move . b d1 , d2 ; Save t h e l e a d i n g b y t e
154 b s r r e a d B y t e ; Read t h e second b y t e
155 l s l .w #8 , d2 ; S h i f t f i r s t b y t e upwards
156 or . b d1 , d2 ; And add t h e new b y t e

Listing 7.13: Utf82Ql: Handling UTF8 two byte characters

It’s exception time again. There are rogue characters which are two bytes in UTF8 but should be
single bytes if Sir Clive had used correct ASCII! The first exception to handle is the UK Pound
sign. It is always $C2A3 in UTF8 which corresponds to CHR$(96) on the QL.

157 ;−−
158 ; E x c e p t i o n c h e c k i n g . UTF8 codes $C2A3 f o r t h e UK Pound and $C2A9 f o r
159 ; c o p y r i g h t , a r e n o t i n t h e t a b l e . They a r e QL codes $60 (9 6) and $7F
160 ; (1 2 7) and a r e e x c e p t i o n s t o t h e r u l e t h a t a QL code l e s s t h a n 128
161 ; a lways has a one b y t e code i n UTF8 − t h e y a r e bo th two b y t e s .
162 ;−−
163 t e s t P o u n d
164 cmpi .w # ut f8Pound , d2 ; Got a UK Pound ?
165 bne . s t e s t C o p y r i g h t ; No
166
167 gotPound
168 move . b # qlPound , d1 ; QL Pound code
169 b r a . s oneByte ; Wr i t e i t o u t & loop around

Listing 7.14: Utf82Ql: Handling exceptions - the UK Pound symbol

If it wasn’t a UTF8 UK Pound that we just read, was it a copyright symbol? This has UTF8 code
$C2A9 and QL CHR$(127), so the next code section handles that.

170 t e s t C o p y r i g h t
171 cmpi .w # u t f 8 C o p y r i g h t , d2 ; Got a c o p y r i g h t ?
172 bne . s doScan ; No
173
174 g o t C o p y r i g h t
175 move . b # q l C o p y r i g h t , d1
176 b r a . s oneByte ; Wr i t e i t o u t & loop around

Listing 7.15: Utf82Ql: Handling exceptions - the copyright symbol

7.1 The Code 49

Those are all the exceptions in the two byte characters, so the rest should be simple. The word in
D2 is checked and converted to a QL character code by the subroutine at “scanTable” which will
be discussed later. If the character is a valid two byte UTF8 character, it will be written out and
we then return to the top of the main loop.

177 ;−−
178 ; Ok , e x c e p t i o n s p r o c e s s e d , do t h e r e m a i n i n g two b y t e c h a r a c t e r s .
179 ;−−
180 doScan
181 b s r . s s c a n T a b l e ; I s t h i s v a l i d UTF8?
182 cmpi .w #−1,d0 ; Not found ?
183 bmi . s inva l idUTF8 ; No , n o t found .
184
185 val idUTF8
186 move . b d0 , d1 ; Get t h e c h a r a c t e r code
187 b s r . s w r i t e B y t e ; Wr i t e i t o u t
188 b r a readLoop ; And c o n t i n u e .

Listing 7.16: Utf82Ql: Two byte UTF8 character handling

On the other hand, if the character is an invalid one, er exit the program with an “Error in expres-
sion” error code, assuming EXEC_W is waiting to retrieve the error of course.

189 inva l idUTF8
190 moveq # e r r _ e x p , d0 ; E r r o r i n e x p r e s s i o n
191 b r a e r r o r E x i t ; Ba le o u t .

Listing 7.17: Utf82Ql: Invalid UTF8 character detected

We are now done processing the two byte UTF8 characters and ready to move on to the three byte
ones. Of those, we only care about the Euro which is $E282AC and the four arrow keys which are
$E28690 through to $E28693.

The next section of code saves the leading byte from D1 into D2 then reads the second byte into
D1. If the seconds byte is suitable for the Euro or arrow keys, we will continue, otherwise we bale
out, as above, with invalid UTF8 error messages.

192 ;−−
193 ; At t h i s p o i n t we s h o u l d have a UTF8 t h r e e b y t e c h a r a c t e r b u t we
194 ; on ly have t h e f i r s t b y t e i n D1 . We need t h e second b y t e a l s o , so
195 ; r e a d i t and check t h a t i t i s i n d e e d v a l i d . Then g e t t h e t h i r d b y t e .
196 ; A l l our t h r e e b y t e c h a r a c t e r s s h o u l d have $E2 i n t h e f i r s t b y t e .
197 ;
198 ; The Euro i s $E282AC .
199 ; The Arrows a r e $E2869x where ’x ’ i s 0 ,1 ,2 o r 3 .
200 ;−−
201 t h r e e B y t e s
202 cmpi . b #$e2 , d1 ; V a l i d t h r e e b y t e ?
203 bne . s inva l idUTF8 ; Looks u n l i k e l y .
204
205 move . b d1 , d2 ; Save t h e f i r s t b y t e
206 b s r . s r e a d B y t e ; Get t h e second b y t e
207 cmpi . b #$82 , d1 ; Euro second b y t e ?
208 beq . s t h r e e V a l i d ; Yes
209 cmpi . b #$86 , d1 ; Arrow second b y t e ?
210 bne . s inva l idUTF8 ; Sadly , no , e r r o r o u t .

Listing 7.18: Utf82Ql: Three byte UTF8 character handling

50 Chapter 7. Utf82ql Utility

This next section of the code merges the second byte into D2 giving us the first word of the three
character UTF8 code, then reads the third and final byte into D1. If the leading word is not $E282,
we are possibly handling the arrow keys, so we skip off to handle those elsewhere.

211 t h r e e V a l i d
212 l s l .w #8 , d2 ; S h i f t f i r s t b y t e upwards
213 or . b d1 , d2 ; And add t h e new b y t e
214 b s r . s r e a d B y t e ; Get t h e t h i r d b y t e
215 cmpi .w # $e282 , d2 ; Euro p o s s i b l y ?
216 bne . s t h r e e A r r o w s ; No , t r y a r ro ws

Listing 7.19: Utf82Ql: Fetching the third byte

We should be handling the Euro here then, so the next snippet of the code checks that the third
byte is indeed a valid Euro third byte and bales out if not. If it was valid, we set up D1 with the
SMSQ Euro code, CHR$(181) and skip back to the top of the main loop via the code at “oneByte”
which writes the character in D1 to the QL text file.

217 ;−−
218 ; We have r e a d $e282 so i f we g e t $ac next , we have t h e eu ro . I f n o t
219 ; i t ’ s an e r r o r i n t h e UTF8 c h a r a c t e r s t h a t t h e QL u n d e r s t a n d s .
220 ;−−
221 t h r e e E u r o
222 cmpi . b # $ac , d1 ; Need t h i s f o r t h e Euro
223 bne . s inva l idUTF8 ; No , e r r o r o u t a g a i n .
224 move . b # qlEuro , d1 ; QL Euro code
225 b r a oneByte ; Wr i t e i t o u t and c o n t i n u e .

Listing 7.20: Utf82Ql: Handling the Euro Currency symbol

The remaining three character UTF8 code must be one of the 4 arrow keys. The first two bytes
will be $E286 and the third byte will be one of $90, $91, $92 or $93 - anything else is an invalid
UTF8 character as far as the Ql is concerned.

The next code section checks the word in D2 to be sure it’s a potential arrow key. If not, it’s invalid
and we exit with an error. If the code was potentially an arrow character, subtracting $90 will give
us a value between zero of 3 for a valid arrow - so it went negative, we didn’t have an arrow and
we bale out, again, with an error.

So far so good, if the value left in D1 is bigger than 3, it cannot be an arrow so once again, we
leave the utility with an error code indicating invalid UTF8.

Finally, we must have a valid arrow. By adding on $BC to the current value in D1 we get the
appropriate QL arrow character code in D1 and we send that to the output QL file by utilising the
code at “oneByte” to write it and head back to the top of the loop.

226 ;−−
227 ; The QL ar ro ws a r e $BC , $BD , $BE and $BF (l e f t , r i g h t , up , down) .
228 ; The UTF8 , $E2869x where ’x ’ i s 0 , 2 , 1 o r 3 t o c o r r e s p o n d wi th t h e
229 ; o r d e r o f t h e QL arrow codes .
230 ;−−
231 t h r e e A r r o w s
232 cmpi .w # $e286 , d2 ; Got a p o t e n t i a l a r row code ?
233 bne . s inva l idUTF8 ; F r a i d not , e r r o r o u t .
234 s u b i . b #$90 , d1 ; D1 i s now 0−3 f o r v a l i d a r ro ws
235 bmi . s inva l idUTF8 ; Oops , i t went n e g a t i v e
236 cmpi . b #3 , d1 ; H i g h e s t a r row code
237 b h i . s inva l idUTF8 ; Oops , i n v a l i d ar row code .

7.1 The Code 51

238 a d d i . b #$bc , d1 ; Conve r t t o QL arrow code .
239 b r a oneByte ; Wr i t e i t o u t and c o n t i n u e .

Listing 7.21: Utf82Ql: Handling the arrow characters

The rest of the code are subroutines you have seen before2. The first writes a single byte to the
output file while the second reads a single byte from the UTF8 input file. These routines never
return if QDOSMSQ returns an error code, other than EOF.

240 ;−−
241 ; A s m a l l b u t p e r f e c t l y formed s u b r o u t i n e t o send t h e b y t e i n D1 t o
242 ; t h e o u t p u t QL f i l e .
243 ; On Ent ry , A0 = i n p u t c h a n n e l ID and A3 = o u t p u t c h a n n e l ID .
244 ; On e x i t , D0 = 0 , Z s e t .
245 ; On e r r o r , n e v e r r e t u r n s .
246 ;−−
247 w r i t e B y t e
248 move . l a5 , a0 ; Get t h e c o r r e c t c h a n n e l ID
249 moveq # i o _ s b y t e , d0 ; Send one b y t e
250 t r a p #3
251 t s t . l d0 ; OK?
252 bne . s e r r o r E x i t ; Oops !
253 r t s
254
255 ;−−
256 ; Another p e r f e c t l y formed s u b r o u t i n e t o r e a d one b y t e i n t o D1
257 ; from t h e i n p u t UTF8 f i l e .
258 ; On Ent ry , A0 = o u t p u t c h a n n e l ID and A3 = i n p u t c h a n n e l ID .
259 ; On e x i t , e r r o r codes i n D0 , Z s e t i f no e r r o r and D1 . B = c h a r a c t e r
260 ; j u s t r e a d .
261 ;−−
262 r e a d B y t e
263 move . l a4 , a0 ; Get t h e c o r r e c t c h a n n e l ID
264 moveq # i o _ f b y t e , d0 ; F e t c h one b y t e
265 t r a p #3 ; Do i n p u t
266 t s t . l d0 ; OK?
267 r t s

Listing 7.22: Utf82Ql: Writing and reading bytes

Finally a new section of code which is used to scan the table of two byte UTF8 characters. In the
following routine, register D0 is being used as the offset into the table and will obviously increase
by two each time we fail to find the UTF8 word we are searching for. If we reach the end of the
table, indicated by a word of zero, we have a problem and we will exit via “scanDone”. If the
routine exits through “scanFound” then we have found our character.

268 ;−−
269 ; Scan t h e UTF8 t a b l e l o o k i n g f o r t h e word i n D2 . I f found , we have
270 ; t h e t a b l e o f f s e t i n D0 and t h a t i s t h e n h a l v e d t o g e t t h e i n d e x which
271 ; i s s t i l l $80 below t h e c o r r e c t c h a r a c t e r code − we add t o c o n v e r t .
272 ; R e t u r n s wi th D0 = t h e c h a r a c t e r code , o r $FFFF t o show t h e end was
273 ; r e a c h e d and we a p p e a r t o have an i n v a l i d two b y t e c h a r a c t e r . A2
274 ; h o l d s t h e t a b l e a d d r e s s . D7 i s a working r e g i s t e r .
275 ;−−
276 s c a n T a b l e

2You will have seen before if you read the code in the previous chapter that is!

52 Chapter 7. Utf82ql Utility

277 moveq #0 , d0 ; C u r r e n t o f f s e t i n t o UTF8 t a b l e .
278
279 scanLoop
280 move .w 0(a2 , d0 .w) , d7 ; F e t c h c u r r e n t t a b l e e n t r y
281 beq . s scanDone ; Yes , z e r o = n o t found
282 cmp .w d2 , d7 ; Found i t y e t ?
283 beq . s scanFound ; Yes
284 addq .w #2 , d0 ; No , n e x t o f f s e t
285 b r a . s scanLoop ; Keep l o o k i n g

Listing 7.23: Utf82Ql: Scanning for UTF8 words

If we get to the next snippet of code, we have found the word we were searching for in the table.
D0 is still the offset into the table, so if we divide by two, we get the index into the table instead.
As the first character in the table is CHR$(128) (aka $80) adding that value to the index found
gives the correct character code for the QL and we return to the calling code with D0 holding the
QL character to be written out.

286 ;−−
287 ; The o f f s e t i n D0 i s where we found t h e UTF8 word we wanted . Halve
288 ; i t t o g e t t h e i n d e x i n t o t h e t a b l e , t h e n add $80 t o g e t t h e c o r r e c t
289 ; code f o r t h e c h a r a c t e r on t h e QL .
290 ;−−
291 scanFound
292 l s r .w #1 , d0 ; Conve r t o f f s e t t o i n d e x
293 add .w #$80 , d0 ; Conve r t t o c h a r a c t e r code
294 r t s

Listing 7.24: Utf82Ql: UTF8 character found

We didn’t find the required word in the table, so we return with D0 holing -1 which is not a valid
character code.

295 ;−−
296 ; UTF8 word n o t found , p a n i c !
297 ;−−
298 scanDone
299 moveq #−1,d0 ; Not found
300 r t s

Listing 7.25: Utf82Ql: Missing UTF8 word

The following code is the usual tidy up and handle errors, or otherwise code, much loved by me
and my “YAF”s!

301 ;−−
302 ; No e r r o r s , e x i t q u i e t l y back t o SuperBASIC .
303 ;−−
304 a l l D o n e
305 moveq #0 , d0
306
307 ;−−
308 ; We have h i t an e r r o r so we copy t h e code t o D3 t h e n e x i t v i a a
309 ; f o r c i b l e remova l o f t h i s j o b . EXEC_W/EW w i l l d i s p l a y t h e e r r o r i n
310 ; SuperBASIC , b u t EXEC/EX w i l l n o t .
311 ;−−
312 e r r o r E x i t
313 move . l d0 , d3 ; E r r o r code we want t o r e t u r n

7.1 The Code 53

314
315 ;−−
316 ; K i l l mys e l f when an e r r o r was d e t e c t e d , o r a t EOF .
317 ;−−
318 s u i c i d e
319 moveq # m t _ f r j o b , d0 ; Th i s j o b w i l l d i e soon
320 moveq #me , d1
321 t r a p #1

Listing 7.26: Utf82Ql: Clean up and exit handling

And finally for this utility, the table of values for valid UTF8 two byte characters between 128 and
187 ($80 to $BB) which are the only ones the QL will be able to cope with. Some values are set
to $FFFF which simply indicates that this QL character is an exception handles in the code and
the appropriate entry in the table will never be searched for. Those are the Grave/backtick and the
Euro characters.

A word of zero indicates the end of the table.

322 ;−−
323 ; The f o l l o w i n g t a b l e c o n t a i n s t h e two b y t e s e q u e n c e s r e q u i r e d f o r
324 ; QL c h a r a c t e r s from c h a r a c t e r $80 onwards . Those f l a g g e d as $FFFF
325 ; a r e e x c e p t i o n s , d e a l t w i th i n t h e code . There a r e no e n t r i e s f o r
326 ; t h e ar row keys as t h e y would s imp ly be z e r o words a t t h e end of t h e
327 ; t a b l e .
328 ;−−
329 u t f 8
330 dc .w $c3a4 ; a umlau t
331 dc .w $c3a3 ; a t i l d e
332 dc .w $c3a2 ; a c i r c u m f l e x
333 dc .w $c3a9 ; e a c u t e
334 dc .w $c3b6 ; o umlau t
335 dc .w $c3b5 ; o t i l d e
336 dc .w $c3b8 ; o s l a s h
337 dc .w $c3bc ; u umlau t
338 dc .w $c3a7 ; c c e d i l l a
339 dc .w $c3b1 ; n t i l d e
340 dc .w $c3a6 ; ae l i g a t u r e
341 dc .w $c593 ; oe l i g a t u r e
342 dc .w $c3a1 ; a a c u t e
343 dc .w $c3a0 ; a g r a v e
344 dc .w $c3a2 ; a c i r c u m f l e x
345 dc .w $c3ab ; e umlau t
346 dc .w $c3a8 ; e g r a v e
347 dc .w $c3aa ; e c i r c u m f l e x
348 dc .w $ c 3 a f ; i umlau t
349 dc .w $c3ad ; i a c u t e
350 dc .w $c3ac ; i g r a v e
351 dc .w $c3ae ; i c i r c u m f l e x
352 dc .w $c3b3 ; o a c u t e
353 dc .w $c3b2 ; o g r a v e
354 dc .w $c3b4 ; o c i r c u m f l e x
355 dc .w $c3ba ; u a c u t e
356 dc .w $c3b9 ; u g r a v e
357 dc .w $c3bb ; u c i r c u m f l e x
358 dc .w $ceb2 ; B as i n s s (German)
359 dc .w $c2a2 ; Cent

54 Chapter 7. Utf82ql Utility

360 dc .w $c2a5 ; Yen
361 dc .w $ f f f f ; Grave a c c e n t − s i n g l e b y t e
362 dc .w $c384 ; A umlau t
363 dc .w $c383 ; A t i l d e
364 dc .w $c385 ; A c i r c l e
365 dc .w $c389 ; E a c u t e
366 dc .w $c396 ; O umlau t
367 dc .w $c395 ; O t i l d e
368 dc .w $c398 ; O s l a s h
369 dc .w $c39c ; U umlau t
370 dc .w $c387 ; C c e d i l l a
371 dc .w $c391 ; N t i l d e
372 dc .w $c386 ; AE l i g a t u r e
373 dc .w $c592 ; OE l i g a t u r e
374 dc .w $ceb1 ; a l p h a
375 dc .w $ceb4 ; d e l t a
376 dc .w $ceb8 ; t h e t a
377 dc .w $cebb ; lambda
378 dc .w $c2b5 ; micro (mu?)
379 dc .w $cf80 ; PI
380 dc .w $cf95 ; o p i p e
381 dc .w $c2a1 ; ! u p s i d e down
382 dc .w $c2bf ; ? u p s i d e down
383 dc .w $ f f f f ; Euro
384 dc .w $c2a7 ; S e c t i o n mark
385 dc .w $c2a4 ; Cur rency symbol
386 dc .w $c2ab ; <<
387 dc .w $c2bb ; >>
388 dc .w $c2ba ; Degree
389 dc .w $c3b7 ; D iv id e
390
391 dc .w $0000 ; End of t a b l e

Listing 7.27: Utf82Ql: The UTF8 “two byte” character table

8. Image Credits

The front cover image on this ePeriodical is taken from the book Kunstformen der Natur by Ger-
man biologist Ernst Haeckel. The book was published between 1899 and 1904. The image used
is of various Polycystines which are a specific kind of micro-fossil.

I have also cropped the image for use on each chapter heading page.

You can read about Polycystines on Wikipedia and there is a brief overview of the above book,
also on Wikipedia, which shows a number of other images taken from the book. (Some of which
I considered before choosing the current one!)

Polycystines have absolutely nothing to do with the QL or computing in general - in fact, I suspect
they died out before electricity was invented - but I liked the image, and decided that it would
make a good cover for the book and a decent enough chapter heading image too.

Not that I am suggesting, in any way whatsoever, that we QL fans are ancient.

https://en.wikipedia.org/wiki/Polycystine
https://en.wikipedia.org/wiki/Kunstformen_der_Natur

	1 Preface
	1.1 Feedback
	1.2 Subscribing to The Mailing List
	1.3 Contacting The Mailing List

	2 Feedback on Issue 6
	2.1 No Feedback so far!

	3 The Fastest Scrolling in the West
	3.1 Messing Around with the Q68
	3.2 The Straight-Forward Approach
	3.3 Unrolling loops (or: How to waste Precious Amounts of Memory)
	3.4 MOVEM.L Can Work in Other Places Other Than the Stack
	3.5 If Software Can't Cope, Use Hardware

	4 Lookup Tables
	4.1 Bits and Bobs
	4.2 Character Characteristics
	4.2.1 A Final Thought

	5 UTF8 and the QL
	5.1 UTF8 Encoding
	5.2 The QL Character Set

	6 Ql2utf8 Utility
	6.1 The Code

	7 Utf82ql Utility
	7.1 The Code

	8 Image Credits

